{"title":"SERS-Driven Evolution of Lateral and Vertical Flow Assays in Medical Diagnostics.","authors":"Boyou Heo, Ho Sang Jung","doi":"10.3390/bios15090573","DOIUrl":null,"url":null,"abstract":"<p><p>Surface-enhanced Raman scattering (SERS) has emerged as a powerful signal amplification strategy to address the inherent limitations of conventional flow-based diagnostic methods such as lateral flow analysis (LFA) and vertical flow analysis (VFA). By incorporating SERS-active nanostructures into these platforms, SERS-integrated LFA and VFA systems have significantly improved sensitivity, specificity, and multiplexing performance while maintaining the simplicity and portability of conventional approaches. In this review, we summarize recent advances in SERS-enhanced flow-based diagnostics with a focus on exogenous and endogenous disease detection. Exogenous targets include viral antigens, bacterial pathogens, and foodborne contaminants such as mycotoxins and antibiotic residues. Endogenous applications include therapeutic drug monitoring, inflammation profiling, cancer biomarker detection, and exosome-based molecular subtyping. We highlight the structural differences between LFA and VFA approaches and their impact on analytical performance, and explore the advantages of SERS-integrated platforms for rapid and multiplexed detection in complex biological matrices. Finally, we provide an overview of key technical challenges, such as signal reproducibility, matrix interference, and device integration, and discuss future directions for clinical implementation of SERS-based flow diagnostics in point-of-care settings.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090573","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful signal amplification strategy to address the inherent limitations of conventional flow-based diagnostic methods such as lateral flow analysis (LFA) and vertical flow analysis (VFA). By incorporating SERS-active nanostructures into these platforms, SERS-integrated LFA and VFA systems have significantly improved sensitivity, specificity, and multiplexing performance while maintaining the simplicity and portability of conventional approaches. In this review, we summarize recent advances in SERS-enhanced flow-based diagnostics with a focus on exogenous and endogenous disease detection. Exogenous targets include viral antigens, bacterial pathogens, and foodborne contaminants such as mycotoxins and antibiotic residues. Endogenous applications include therapeutic drug monitoring, inflammation profiling, cancer biomarker detection, and exosome-based molecular subtyping. We highlight the structural differences between LFA and VFA approaches and their impact on analytical performance, and explore the advantages of SERS-integrated platforms for rapid and multiplexed detection in complex biological matrices. Finally, we provide an overview of key technical challenges, such as signal reproducibility, matrix interference, and device integration, and discuss future directions for clinical implementation of SERS-based flow diagnostics in point-of-care settings.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.