Recent Advances in Microfluidic Biofuel Cells.

IF 5.6 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Takahiro Kawaguchi, Shota Ito, Daisuke Nakane, Takashiro Akitsu
{"title":"Recent Advances in Microfluidic Biofuel Cells.","authors":"Takahiro Kawaguchi, Shota Ito, Daisuke Nakane, Takashiro Akitsu","doi":"10.3390/bios15090627","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, fuel cells operate by using small fuel molecules such as hydrogen and methanol to produce energy, water, and carbon dioxide. Enzyme biofuel cells use enzymes rather than precious metals as electrode catalysts. In recent years, enzyme-immobilized electrodes have been developed by combining enzyme biofuel cells with microfluidic technology to improve the efficiency and performance of fuel cells. In this review, we will provide an overview and describe the current status of recent enzyme biofuel cells, microfluidic technology, and their applications to microfluidic fuel cells.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090627","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, fuel cells operate by using small fuel molecules such as hydrogen and methanol to produce energy, water, and carbon dioxide. Enzyme biofuel cells use enzymes rather than precious metals as electrode catalysts. In recent years, enzyme-immobilized electrodes have been developed by combining enzyme biofuel cells with microfluidic technology to improve the efficiency and performance of fuel cells. In this review, we will provide an overview and describe the current status of recent enzyme biofuel cells, microfluidic technology, and their applications to microfluidic fuel cells.

Abstract Image

Abstract Image

Abstract Image

微流体生物燃料电池的最新进展。
传统上,燃料电池通过使用氢和甲醇等小燃料分子来产生能量、水和二氧化碳。酶生物燃料电池使用酶而不是贵金属作为电极催化剂。近年来,将酶生物燃料电池与微流体技术相结合,开发了酶固定化电极,以提高燃料电池的效率和性能。本文将对酶生物燃料电池、微流控技术及其在微流控燃料电池中的应用现状进行综述和介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信