Progress and Prospects in FRET for the Investigation of Protein-Protein Interactions.

IF 5.6 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Yue Zhang, Xinyue Ma, Meihua Zhu, Vivien Ya-Fan Wang, Jiajia Guo
{"title":"Progress and Prospects in FRET for the Investigation of Protein-Protein Interactions.","authors":"Yue Zhang, Xinyue Ma, Meihua Zhu, Vivien Ya-Fan Wang, Jiajia Guo","doi":"10.3390/bios15090624","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) play a crucial role in various biological processes, including signal transduction, transcriptional regulation, and metabolic pathways. Over the years, many methods have been developed to study PPIs, such as yeast two-hybrid (Y2H), co-immunoprecipitation (Co-IP), pull-down assays, and surface plasmon resonance (SPR). However, each of these techniques has its own limitations, including false positives, a lack of specific binding partners, and restricted interaction zones. Fluorescence resonance energy transfer (FRET) has emerged as a powerful technique for investigating PPIs, offering several advantages over traditional methods. Recent advancements in fluorescence microscopy have further enhanced its application in PPI studies. In this review, we summarize recent developments in FRET-based approaches and their applications in PPIs research over the past five years, including conventional FRET, time-resolved FRET (TR-FRET), fluorescence lifetime imaging microscopy-FRET (FLIM-FRET), single-molecule FRET (smFRET), fluorescence cross-correlation spectroscopy FRET (FCCS-FRET), and provide guidance on selecting the most appropriate method for PPIs studies.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090624","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-protein interactions (PPIs) play a crucial role in various biological processes, including signal transduction, transcriptional regulation, and metabolic pathways. Over the years, many methods have been developed to study PPIs, such as yeast two-hybrid (Y2H), co-immunoprecipitation (Co-IP), pull-down assays, and surface plasmon resonance (SPR). However, each of these techniques has its own limitations, including false positives, a lack of specific binding partners, and restricted interaction zones. Fluorescence resonance energy transfer (FRET) has emerged as a powerful technique for investigating PPIs, offering several advantages over traditional methods. Recent advancements in fluorescence microscopy have further enhanced its application in PPI studies. In this review, we summarize recent developments in FRET-based approaches and their applications in PPIs research over the past five years, including conventional FRET, time-resolved FRET (TR-FRET), fluorescence lifetime imaging microscopy-FRET (FLIM-FRET), single-molecule FRET (smFRET), fluorescence cross-correlation spectroscopy FRET (FCCS-FRET), and provide guidance on selecting the most appropriate method for PPIs studies.

蛋白质-蛋白质相互作用的FRET研究进展与展望。
蛋白-蛋白相互作用(PPIs)在多种生物过程中起着至关重要的作用,包括信号转导、转录调控和代谢途径。多年来,人们开发了许多方法来研究PPIs,如酵母双杂交(Y2H)、共免疫沉淀(Co-IP)、下拉试验和表面等离子体共振(SPR)。然而,每种技术都有其自身的局限性,包括误报、缺乏特定的绑定伙伴以及受限制的交互区域。荧光共振能量转移(FRET)已经成为一种强大的技术来研究质子泵抑制剂,提供了几个优于传统方法。近年来荧光显微镜技术的发展进一步加强了其在PPI研究中的应用。本文综述了近五年来基于FRET的方法及其在ppi研究中的应用进展,包括传统FRET、时间分辨FRET (TR-FRET)、荧光寿命成像显微镜FRET (flm -FRET)、单分子FRET (smFRET)、荧光互相关光谱FRET (FCCS-FRET),并为ppi研究选择最合适的方法提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信