{"title":"Advances and Innovations in Conjugated Polymer Fluorescent Sensors for Environmental and Biological Detection.","authors":"Viet-Duc Phung, Vinh Van Tran","doi":"10.3390/bios15090580","DOIUrl":null,"url":null,"abstract":"<p><p>Thanks to their multiple outstanding features-such as high fluorescence quantum yield, good photostability, and excellent sensitivity-conjugated polymers (CPs) have emerged as a pioneering class of fluorescent materials for sensing applications, particularly in environmental and biological fields, for the detection of a wide range of environmental pollutants and bioactive compounds. The presence of delocalized π-electrons in the CP backbone significantly enhances sensing performance through a unique phenomenon known as the \"molecular wire effect.\" As a result, CP-based fluorescent sensors have been extensively developed and employed as exceptional tools for monitoring various analytes in environmental and biological contexts. A deep understanding of their unique properties, fabrication techniques, and recent innovations is essential for guiding the strategic development of advanced CP-based fluorescent sensors, particularly for future point-of-care applications. This study presents a critical review of the key characteristics of fluorescent sensors and highlights several common types of conjugated polymers (CPs) used in their design and fabrication. It summarizes and discusses the main sensing mechanisms, state-of-the-art applications, and recent innovations of CP-based fluorescent sensors for detecting target compounds in environmental and biological fields. Furthermore, potential strategies and future perspectives for designing and developing high-performance CP-based fluorescent sensors are emphasized. By consolidating current scientific evidence, this review aims to support the advancement of highly sensitive fluorescent sensors based on various CP nanoparticles for environmental and biological applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090580","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thanks to their multiple outstanding features-such as high fluorescence quantum yield, good photostability, and excellent sensitivity-conjugated polymers (CPs) have emerged as a pioneering class of fluorescent materials for sensing applications, particularly in environmental and biological fields, for the detection of a wide range of environmental pollutants and bioactive compounds. The presence of delocalized π-electrons in the CP backbone significantly enhances sensing performance through a unique phenomenon known as the "molecular wire effect." As a result, CP-based fluorescent sensors have been extensively developed and employed as exceptional tools for monitoring various analytes in environmental and biological contexts. A deep understanding of their unique properties, fabrication techniques, and recent innovations is essential for guiding the strategic development of advanced CP-based fluorescent sensors, particularly for future point-of-care applications. This study presents a critical review of the key characteristics of fluorescent sensors and highlights several common types of conjugated polymers (CPs) used in their design and fabrication. It summarizes and discusses the main sensing mechanisms, state-of-the-art applications, and recent innovations of CP-based fluorescent sensors for detecting target compounds in environmental and biological fields. Furthermore, potential strategies and future perspectives for designing and developing high-performance CP-based fluorescent sensors are emphasized. By consolidating current scientific evidence, this review aims to support the advancement of highly sensitive fluorescent sensors based on various CP nanoparticles for environmental and biological applications.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.