{"title":"Cellular <i>Titanomachy</i>: Viral Forces Clash with Mitochondrial Power.","authors":"Théo Defresne, Rodolphe Suspène, Jean-Pierre Vartanian","doi":"10.1146/annurev-virology-092623-090901","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria play a vital role in cellular metabolism, energy production, and immune signaling, making them key targets for viral manipulation. Viruses exploit mitochondrial functions to enhance replication and evade immune responses. They also disrupt mitochondrial dynamics by altering fission/fusion balance and modulating mitophagy, which is essential for mitochondrial quality control. Additionally, they reprogram mitochondrial metabolism, affecting pathways such as oxidative phosphorylation and glycolysis to support replication. Viruses regulate apoptosis, either inhibiting or activating mitochondria-mediated apoptosis to prolong host cell survival or facilitate viral spread. Viral infections also induce oxidative stress through reactive oxygen species generation, affecting cellular integrity. Furthermore, viruses manipulate mitochondrial antiviral immunity by degrading mitochondrial antiviral signaling protein and triggering the release of mitochondrial DNA, modulating immune responses. Understanding these interactions offers valuable insights into viral pathogenesis and presents therapeutic opportunities. Targeting mitochondrial dysfunction and enhancing antiviral immunity could provide new strategies to mitigate viral damage and enhance cellular resilience.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"12 1","pages":"157-178"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-virology-092623-090901","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria play a vital role in cellular metabolism, energy production, and immune signaling, making them key targets for viral manipulation. Viruses exploit mitochondrial functions to enhance replication and evade immune responses. They also disrupt mitochondrial dynamics by altering fission/fusion balance and modulating mitophagy, which is essential for mitochondrial quality control. Additionally, they reprogram mitochondrial metabolism, affecting pathways such as oxidative phosphorylation and glycolysis to support replication. Viruses regulate apoptosis, either inhibiting or activating mitochondria-mediated apoptosis to prolong host cell survival or facilitate viral spread. Viral infections also induce oxidative stress through reactive oxygen species generation, affecting cellular integrity. Furthermore, viruses manipulate mitochondrial antiviral immunity by degrading mitochondrial antiviral signaling protein and triggering the release of mitochondrial DNA, modulating immune responses. Understanding these interactions offers valuable insights into viral pathogenesis and presents therapeutic opportunities. Targeting mitochondrial dysfunction and enhancing antiviral immunity could provide new strategies to mitigate viral damage and enhance cellular resilience.
期刊介绍:
The Annual Review of Virology serves as a conduit for disseminating thrilling advancements in our comprehension of viruses spanning animals, plants, bacteria, archaea, fungi, and protozoa. Its reviews illuminate novel concepts and trajectories in basic virology, elucidating viral disease mechanisms, exploring virus-host interactions, and scrutinizing cellular and immune responses to virus infection. These reviews underscore the exceptional capacity of viruses as potent probes for investigating cellular function.