Yusi Peng, Shuai Zhao, Masaki Tanemura, Yong Yang, Ming Liu
{"title":"Exploration of the Tolerance of Novel Coronaviruses to Temperature Changes Based on SERS Technology.","authors":"Yusi Peng, Shuai Zhao, Masaki Tanemura, Yong Yang, Ming Liu","doi":"10.3390/bios15090558","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the rapid development of SERS technology, trace detection of various viruses in the sewage and body fluid environments and accurate positive and negative diagnosis of detection samples can be achieved. However, evaluating the environmental survival ability of viruses based on SERS technology remains an unexplored issue, but holds significant guiding significance for effective epidemic prevention and control as well as inactivation treatment. In this work, Au nanoarrays were fabricated on silicon substrates through a simple Ar ion sputtering route as ultra-sensitive SERS chips. With the synergistic contribution of the \"lightning rod\" effect and the enhanced coupling surface plasmon caused by the nanoarrays, the ultra-sensitive detection of SARS-CoV-2 S protein with a concentration of 1 pg/mL and SERS enhancement factor of 4.89 × 10<sup>9</sup> can be achieved. Exploration of the environmental survival ability of the SARS-CoV-2 virus indicates that the Raman activity of SARS-CoV-2 S protein exhibited higher temperature tolerance from 0 °C to 60 °C than SARS-CoV S protein, suggesting that the SARS-CoV-2 virus has less temperature influence from increasing air temperature than the SARS-CoV virus to a certain extent, which explains the seasonal recurrence pattern and regional transmission pattern of the novel coronavirus that are different from the SARS virus.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467563/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090558","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the rapid development of SERS technology, trace detection of various viruses in the sewage and body fluid environments and accurate positive and negative diagnosis of detection samples can be achieved. However, evaluating the environmental survival ability of viruses based on SERS technology remains an unexplored issue, but holds significant guiding significance for effective epidemic prevention and control as well as inactivation treatment. In this work, Au nanoarrays were fabricated on silicon substrates through a simple Ar ion sputtering route as ultra-sensitive SERS chips. With the synergistic contribution of the "lightning rod" effect and the enhanced coupling surface plasmon caused by the nanoarrays, the ultra-sensitive detection of SARS-CoV-2 S protein with a concentration of 1 pg/mL and SERS enhancement factor of 4.89 × 109 can be achieved. Exploration of the environmental survival ability of the SARS-CoV-2 virus indicates that the Raman activity of SARS-CoV-2 S protein exhibited higher temperature tolerance from 0 °C to 60 °C than SARS-CoV S protein, suggesting that the SARS-CoV-2 virus has less temperature influence from increasing air temperature than the SARS-CoV virus to a certain extent, which explains the seasonal recurrence pattern and regional transmission pattern of the novel coronavirus that are different from the SARS virus.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.