Abhishek Saha, Sneha Singh, Rudra Sankar Dhar, Kajjwal Ghosh, A Y Seteikin, Amit Banerjee, I G Samusev
{"title":"Exploration and Analysis of GaN-Based FETs with Varied Doping Concentration in Nano Regime for Biosensing Application.","authors":"Abhishek Saha, Sneha Singh, Rudra Sankar Dhar, Kajjwal Ghosh, A Y Seteikin, Amit Banerjee, I G Samusev","doi":"10.3390/bios15090613","DOIUrl":null,"url":null,"abstract":"<p><p>This study conducts a comprehensive examination of a GaN channel-based nanobiosensor featuring a dielectrically modulated trigate FinFET structure, incorporating both uniform and Gaussian channel doping. The proposed device incorporates a nanocavity structure situated beneath the gate region, intended for the analysis of diverse biomolecules in biosensing applications. The proposed biosensor employs HfO<sub>2</sub> as the gate dielectric, characterized by a dielectric constant of 25, leading to an enhanced switching ratio for the device. This study examines the electrical properties relevant to biomolecule identification, including the switching ratio, DIBL, threshold swing, threshold voltage, and transconductance. The sensitivity of these properties concerning the drain current is subsequently assessed. Enhanced sensitivity increases the likelihood of detecting biomolecules. The electrical property of a biomolecule is examined in the absence of another biomolecule within the cavity. The apparatus is designed to detect neutral biomolecules. Simultaneously, further investigational research has been undertaken regarding the linearity behavior of GAA FET, nanobiosensors, and dielectrically modulated TGFinFET. This study's results have been compared with those of GaN-based FinFET and GaN SOI FinFET technologies. The data indicates approximately ∼103% and ∼42% improvements in <i>I</i><sub><i>OFF</i></sub> and Switching ratio, respectively, when compared to IRDS 2025. The nanobiosensor (GAA FET) demonstrates enhanced linear performance concerning higher-order voltage and current intercept points, including VIP2, VIP3, IIP3, and P1dB.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducts a comprehensive examination of a GaN channel-based nanobiosensor featuring a dielectrically modulated trigate FinFET structure, incorporating both uniform and Gaussian channel doping. The proposed device incorporates a nanocavity structure situated beneath the gate region, intended for the analysis of diverse biomolecules in biosensing applications. The proposed biosensor employs HfO2 as the gate dielectric, characterized by a dielectric constant of 25, leading to an enhanced switching ratio for the device. This study examines the electrical properties relevant to biomolecule identification, including the switching ratio, DIBL, threshold swing, threshold voltage, and transconductance. The sensitivity of these properties concerning the drain current is subsequently assessed. Enhanced sensitivity increases the likelihood of detecting biomolecules. The electrical property of a biomolecule is examined in the absence of another biomolecule within the cavity. The apparatus is designed to detect neutral biomolecules. Simultaneously, further investigational research has been undertaken regarding the linearity behavior of GAA FET, nanobiosensors, and dielectrically modulated TGFinFET. This study's results have been compared with those of GaN-based FinFET and GaN SOI FinFET technologies. The data indicates approximately ∼103% and ∼42% improvements in IOFF and Switching ratio, respectively, when compared to IRDS 2025. The nanobiosensor (GAA FET) demonstrates enhanced linear performance concerning higher-order voltage and current intercept points, including VIP2, VIP3, IIP3, and P1dB.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.