Innovative Approaches to EMT-Related Biomarker Identification in Breast Cancer: Multi-Omics and Machine Learning Methods.

IF 3.1 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
BioTech Pub Date : 2025-09-22 DOI:10.3390/biotech14030075
Ghazaleh Khalili-Tanha, Alireza Shoari
{"title":"Innovative Approaches to EMT-Related Biomarker Identification in Breast Cancer: Multi-Omics and Machine Learning Methods.","authors":"Ghazaleh Khalili-Tanha, Alireza Shoari","doi":"10.3390/biotech14030075","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most prevalent cancer among women and is challenging to diagnose and treat due to its diverse subtypes and stages. Precision medicine aims to improve early detection, prognosis, and treatment planning by identifying new clinical biomarkers. The review emphasizes the importance of using cutting-edge technology and artificial intelligence (AI) to identify new biomarkers associated with epithelial-mesenchymal transition (EMT). During EMT, epithelial cells transform into a mesenchymal state, a process driven by genetic and epigenetic alterations that facilitate cancer progression. The review discusses how statistical analysis and machine learning methods applied to multi-omics data facilitate the discovery of novel EMT-related biomarkers, thereby advancing therapeutic strategies. This conclusion is supported by numerous clinical and preclinical studies on breast cancer.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"14 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech14030075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is the most prevalent cancer among women and is challenging to diagnose and treat due to its diverse subtypes and stages. Precision medicine aims to improve early detection, prognosis, and treatment planning by identifying new clinical biomarkers. The review emphasizes the importance of using cutting-edge technology and artificial intelligence (AI) to identify new biomarkers associated with epithelial-mesenchymal transition (EMT). During EMT, epithelial cells transform into a mesenchymal state, a process driven by genetic and epigenetic alterations that facilitate cancer progression. The review discusses how statistical analysis and machine learning methods applied to multi-omics data facilitate the discovery of novel EMT-related biomarkers, thereby advancing therapeutic strategies. This conclusion is supported by numerous clinical and preclinical studies on breast cancer.

乳腺癌emt相关生物标志物鉴定的创新方法:多组学和机器学习方法。
乳腺癌是女性中最普遍的癌症,由于其不同的亚型和阶段,诊断和治疗具有挑战性。精准医学旨在通过识别新的临床生物标志物来改善早期发现、预后和治疗计划。该综述强调了利用尖端技术和人工智能(AI)识别与上皮-间质转化(EMT)相关的新生物标志物的重要性。在EMT过程中,上皮细胞转变为间充质状态,这是一个由促进癌症进展的遗传和表观遗传改变驱动的过程。这篇综述讨论了统计分析和机器学习方法如何应用于多组学数据,促进发现新的emt相关生物标志物,从而推进治疗策略。这一结论得到了大量乳腺癌临床和临床前研究的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信