Le Lin, Xiaoyuan Sun, Haoran Jia, Xiaohui Feng, Yingjie Wang, Rentao Mu, Qiang Fu, Xinhe Bao
{"title":"Tailoring ZnO <sub><i>x</i></sub> Species Confined on ZrO<sub>2</sub> Support for Enhanced CO Hydrogenation.","authors":"Le Lin, Xiaoyuan Sun, Haoran Jia, Xiaohui Feng, Yingjie Wang, Rentao Mu, Qiang Fu, Xinhe Bao","doi":"10.1021/prechem.5c00022","DOIUrl":null,"url":null,"abstract":"<p><p>ZnZrO <sub><i>x</i></sub> is a promising oxide component for direct syngas conversion via oxide-zeolite bifunctional catalysis, while rational design of active centers within the composite oxide remains limited. In this study, through ab initio thermodynamics, molecular dynamics, and microkinetic modeling, we find that diverse subnanometer ZnO <sub><i>x</i></sub> species, including single-site, single-chain, and single-layer configurations, can form on active ZrO<sub>2</sub> surfaces under the reaction conditions. These confined ZnO <sub><i>x</i></sub> species weaken CO adsorption but enhance heterolytic H<sub>2</sub> dissociative adsorption, favoring continuous hydrogenation of CO to methanol over direct or H-assisted CO dissociation. For single-layer ZnO <sub><i>x</i></sub> structures, a double-chain film grows on a monoclinic ZrO<sub>2</sub> (m-ZrO<sub>2</sub>) surface while a graphene-like film emerges on tetragonal ZrO<sub>2</sub> (t-ZrO<sub>2</sub>). These single-layer ZnO <sub><i>x</i></sub> species exhibit higher methanol formation activity than their single-chain or single-site counterparts, which benefit from sufficient sites for adsorption of intermediates and a suitable space for bonding of H with C in CHO. Furthermore, the double-chain ZnO <sub><i>x</i></sub> film confined on m-ZrO<sub>2</sub> exposes octahedral Zn<sub>oct</sub> sites, which are more reactive than the triangular Zn<sub>tri</sub> sites in the graphene-like ZnO <sub><i>x</i></sub> on t-ZrO<sub>2</sub>, despite both sites being nominally three-coordinate. These findings provide insights for the precise design of composite oxide/oxide catalysts through fine-tuning overlayer coverage and/or support surface properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 9","pages":"525-534"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.5c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ZnZrO x is a promising oxide component for direct syngas conversion via oxide-zeolite bifunctional catalysis, while rational design of active centers within the composite oxide remains limited. In this study, through ab initio thermodynamics, molecular dynamics, and microkinetic modeling, we find that diverse subnanometer ZnO x species, including single-site, single-chain, and single-layer configurations, can form on active ZrO2 surfaces under the reaction conditions. These confined ZnO x species weaken CO adsorption but enhance heterolytic H2 dissociative adsorption, favoring continuous hydrogenation of CO to methanol over direct or H-assisted CO dissociation. For single-layer ZnO x structures, a double-chain film grows on a monoclinic ZrO2 (m-ZrO2) surface while a graphene-like film emerges on tetragonal ZrO2 (t-ZrO2). These single-layer ZnO x species exhibit higher methanol formation activity than their single-chain or single-site counterparts, which benefit from sufficient sites for adsorption of intermediates and a suitable space for bonding of H with C in CHO. Furthermore, the double-chain ZnO x film confined on m-ZrO2 exposes octahedral Znoct sites, which are more reactive than the triangular Zntri sites in the graphene-like ZnO x on t-ZrO2, despite both sites being nominally three-coordinate. These findings provide insights for the precise design of composite oxide/oxide catalysts through fine-tuning overlayer coverage and/or support surface properties.
期刊介绍:
Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.