Tailoring ZnO x Species Confined on ZrO2 Support for Enhanced CO Hydrogenation.

IF 6.2
Precision Chemistry Pub Date : 2025-05-30 eCollection Date: 2025-09-22 DOI:10.1021/prechem.5c00022
Le Lin, Xiaoyuan Sun, Haoran Jia, Xiaohui Feng, Yingjie Wang, Rentao Mu, Qiang Fu, Xinhe Bao
{"title":"Tailoring ZnO <sub><i>x</i></sub> Species Confined on ZrO<sub>2</sub> Support for Enhanced CO Hydrogenation.","authors":"Le Lin, Xiaoyuan Sun, Haoran Jia, Xiaohui Feng, Yingjie Wang, Rentao Mu, Qiang Fu, Xinhe Bao","doi":"10.1021/prechem.5c00022","DOIUrl":null,"url":null,"abstract":"<p><p>ZnZrO <sub><i>x</i></sub> is a promising oxide component for direct syngas conversion via oxide-zeolite bifunctional catalysis, while rational design of active centers within the composite oxide remains limited. In this study, through ab initio thermodynamics, molecular dynamics, and microkinetic modeling, we find that diverse subnanometer ZnO <sub><i>x</i></sub> species, including single-site, single-chain, and single-layer configurations, can form on active ZrO<sub>2</sub> surfaces under the reaction conditions. These confined ZnO <sub><i>x</i></sub> species weaken CO adsorption but enhance heterolytic H<sub>2</sub> dissociative adsorption, favoring continuous hydrogenation of CO to methanol over direct or H-assisted CO dissociation. For single-layer ZnO <sub><i>x</i></sub> structures, a double-chain film grows on a monoclinic ZrO<sub>2</sub> (m-ZrO<sub>2</sub>) surface while a graphene-like film emerges on tetragonal ZrO<sub>2</sub> (t-ZrO<sub>2</sub>). These single-layer ZnO <sub><i>x</i></sub> species exhibit higher methanol formation activity than their single-chain or single-site counterparts, which benefit from sufficient sites for adsorption of intermediates and a suitable space for bonding of H with C in CHO. Furthermore, the double-chain ZnO <sub><i>x</i></sub> film confined on m-ZrO<sub>2</sub> exposes octahedral Zn<sub>oct</sub> sites, which are more reactive than the triangular Zn<sub>tri</sub> sites in the graphene-like ZnO <sub><i>x</i></sub> on t-ZrO<sub>2</sub>, despite both sites being nominally three-coordinate. These findings provide insights for the precise design of composite oxide/oxide catalysts through fine-tuning overlayer coverage and/or support surface properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 9","pages":"525-534"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.5c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ZnZrO x is a promising oxide component for direct syngas conversion via oxide-zeolite bifunctional catalysis, while rational design of active centers within the composite oxide remains limited. In this study, through ab initio thermodynamics, molecular dynamics, and microkinetic modeling, we find that diverse subnanometer ZnO x species, including single-site, single-chain, and single-layer configurations, can form on active ZrO2 surfaces under the reaction conditions. These confined ZnO x species weaken CO adsorption but enhance heterolytic H2 dissociative adsorption, favoring continuous hydrogenation of CO to methanol over direct or H-assisted CO dissociation. For single-layer ZnO x structures, a double-chain film grows on a monoclinic ZrO2 (m-ZrO2) surface while a graphene-like film emerges on tetragonal ZrO2 (t-ZrO2). These single-layer ZnO x species exhibit higher methanol formation activity than their single-chain or single-site counterparts, which benefit from sufficient sites for adsorption of intermediates and a suitable space for bonding of H with C in CHO. Furthermore, the double-chain ZnO x film confined on m-ZrO2 exposes octahedral Znoct sites, which are more reactive than the triangular Zntri sites in the graphene-like ZnO x on t-ZrO2, despite both sites being nominally three-coordinate. These findings provide insights for the precise design of composite oxide/oxide catalysts through fine-tuning overlayer coverage and/or support surface properties.

限制在ZrO2载体上的ZnO x物种的裁剪促进CO加氢。
ZnZrO x是一种很有前途的氧化物组分,可以通过氧化物-沸石双功能催化直接转化合成气,但复合氧化物中活性中心的合理设计仍然有限。本研究通过从头算热力学、分子动力学和微动力学建模,发现在反应条件下,活性ZrO2表面可以形成多种亚纳米氧化锌,包括单位点、单链和单层构型。这些受限的氧化锌削弱了CO的吸附,但增强了异裂解H2的解离吸附,比直接或h辅助CO解离更有利于CO连续加氢成甲醇。对于单层ZnO x结构,双链薄膜生长在单斜ZrO2 (m-ZrO2)表面,而石墨烯薄膜出现在四边形ZrO2 (t-ZrO2)表面。与单链或单位点的氧化锌相比,这些单层氧化锌具有更高的甲醇生成活性,这得益于在CHO中有足够的吸附中间体的位置和H与C成键的合适空间。此外,限制在m-ZrO2上的双链ZnO x薄膜暴露出八面体Znoct位点,这些位点比t-ZrO2上的类石墨烯ZnO x中的三角形Zntri位点更具活性,尽管这两个位点名义上都是三坐标的。这些发现为通过微调覆盖层和/或载体表面性质来精确设计复合氧化物/氧化物催化剂提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信