Qin Ding, Tongtong Liu, Zhuoxiao Li, Rongli Sun, Juan Zhang, Lihong Yin, Yuepu Pu
{"title":"Comprehensive Insight into Microcystin-Degrading Mechanism of <i>Sphingopyxis</i> sp. m6 Based on Mlr Enzymes.","authors":"Qin Ding, Tongtong Liu, Zhuoxiao Li, Rongli Sun, Juan Zhang, Lihong Yin, Yuepu Pu","doi":"10.3390/toxins17090446","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial degradation is one important Microcystin (MC) removal method in the natural environment. The traditional MC-degrading pathway was proposed based on the functions of individual recombinant Mlr enzymes and the structures of the main MC-degrading products. However, the actual MC-degrading mechanism by Mlr enzymes in wild-type bacteria remains unclear. In this study, bioinformatic analysis, heterologous expression, and knockout mutation were performed to elaborate the MC-degrading mechanism by Mlr enzymes in <i>Sphingopyxis</i> sp. m6. The results showed that <i>mlr</i> gene cluster was initially acquired by horizontal gene transfer, followed by vertical inheritance within <i>Alphaproteobacteria</i>. Mlr enzymes exhibit distinct subcellular localizations and possess diverse conserved catalytic domains. The enzymatic cascade MlrA/MlrB/MlrC sequentially cleaves Microcystin-LR (MC-LR) via Adda-Arg, Ala-Leu, and Adda-Glu bonds, generating characteristic intermediates (linearized MC-LR, tetrapeptide, and Adda). Notably, recombinant MlrC demonstrated dual-targeting degrading capability (linearized MC-LR and tetrapeptide), while tetrapeptide specificity in endogenous processing of <i>Sphingopyxis</i> sp. m6. Marker-free knockout mutants of <i>mlr</i> genes were first constructed in MC-degrading bacteria, unveiling that <i>mlrA</i> was indispensable in initial MC cleavage, whereas <i>mlrB</i>/<i>mlrC</i>/<i>mlrD</i> displayed functional compensation through other enzymes with similar functions. This study promotes the mechanistic understanding of MC bacterial degradation and offers a theoretical basis for a bioremediation strategy targeting cyanotoxin pollution.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090446","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial degradation is one important Microcystin (MC) removal method in the natural environment. The traditional MC-degrading pathway was proposed based on the functions of individual recombinant Mlr enzymes and the structures of the main MC-degrading products. However, the actual MC-degrading mechanism by Mlr enzymes in wild-type bacteria remains unclear. In this study, bioinformatic analysis, heterologous expression, and knockout mutation were performed to elaborate the MC-degrading mechanism by Mlr enzymes in Sphingopyxis sp. m6. The results showed that mlr gene cluster was initially acquired by horizontal gene transfer, followed by vertical inheritance within Alphaproteobacteria. Mlr enzymes exhibit distinct subcellular localizations and possess diverse conserved catalytic domains. The enzymatic cascade MlrA/MlrB/MlrC sequentially cleaves Microcystin-LR (MC-LR) via Adda-Arg, Ala-Leu, and Adda-Glu bonds, generating characteristic intermediates (linearized MC-LR, tetrapeptide, and Adda). Notably, recombinant MlrC demonstrated dual-targeting degrading capability (linearized MC-LR and tetrapeptide), while tetrapeptide specificity in endogenous processing of Sphingopyxis sp. m6. Marker-free knockout mutants of mlr genes were first constructed in MC-degrading bacteria, unveiling that mlrA was indispensable in initial MC cleavage, whereas mlrB/mlrC/mlrD displayed functional compensation through other enzymes with similar functions. This study promotes the mechanistic understanding of MC bacterial degradation and offers a theoretical basis for a bioremediation strategy targeting cyanotoxin pollution.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.