{"title":"Jet Splitting Enabled One-Step Fabrication of Hierarchically Structured PLA Membranes for High-Performance PM<sub>0.3</sub> Filtration.","authors":"Yintao Zhao, Ying Chen, Xin Ning","doi":"10.3390/nano15181452","DOIUrl":null,"url":null,"abstract":"<p><p>Particulate matter (PM) suspended in the air has posed significant potential threats to human health. However, current air filters designed to intercept PM are confronted with several challenges, including a complicated preparation process, monotonous protective performance, and uncomfortable wearability. Herein, a novel jet-splitting electrospinning strategy was demonstrated to simply fabricate a hierarchically structured PLA membrane with a high filtration performance, antibacterial performance, and rapid heat dissipation for effective and comfortable air filtering. Formulating a cationic antibacterial surfactant in the PLA solution to tailor the splitting of charged jets enables the simultaneous formation of nanofibers, submicron-fibers, and beads in the hierarchical filtration network by the single-jet electrospinning. Benefiting from the synergistic effect of multi-scale fibers and beads, the hierarchically structured filter exhibited an excellent filtration efficiency of 99.979% and high quality factor of 0.45 Pa<sup>-1</sup> against PM<sub>0.3</sub>, with a remarkably low pressure drop of 18.7 Pa. Furthermore, the hierarchical structure endowed the filter with excellent stability in filtration performance, even under 20-cyclic and 480 min long-term tests, high-humidity tests with sodium chloride aerosol particles, and the 20-cycle PM<sub>2.5</sub> smoke tests. Simultaneously, the filter also demonstrated remarkable antibacterial performance and an excellent heat dissipation property-all achieved due to its PLA formulation and the hierarchical structure.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181452","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate matter (PM) suspended in the air has posed significant potential threats to human health. However, current air filters designed to intercept PM are confronted with several challenges, including a complicated preparation process, monotonous protective performance, and uncomfortable wearability. Herein, a novel jet-splitting electrospinning strategy was demonstrated to simply fabricate a hierarchically structured PLA membrane with a high filtration performance, antibacterial performance, and rapid heat dissipation for effective and comfortable air filtering. Formulating a cationic antibacterial surfactant in the PLA solution to tailor the splitting of charged jets enables the simultaneous formation of nanofibers, submicron-fibers, and beads in the hierarchical filtration network by the single-jet electrospinning. Benefiting from the synergistic effect of multi-scale fibers and beads, the hierarchically structured filter exhibited an excellent filtration efficiency of 99.979% and high quality factor of 0.45 Pa-1 against PM0.3, with a remarkably low pressure drop of 18.7 Pa. Furthermore, the hierarchical structure endowed the filter with excellent stability in filtration performance, even under 20-cyclic and 480 min long-term tests, high-humidity tests with sodium chloride aerosol particles, and the 20-cycle PM2.5 smoke tests. Simultaneously, the filter also demonstrated remarkable antibacterial performance and an excellent heat dissipation property-all achieved due to its PLA formulation and the hierarchical structure.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.