{"title":"EpiAgent: foundation model for single-cell epigenomics.","authors":"Xiaoyang Chen, Keyi Li, Xuejian Cui, Zian Wang, Qun Jiang, Jiacheng Lin, Zhen Li, Zijing Gao, Hairong Lv, Rui Jiang","doi":"10.1038/s41592-025-02822-z","DOIUrl":null,"url":null,"abstract":"<p><p>Although single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) enables the exploration of the epigenomic landscape that governs transcription at the cellular level, the complicated characteristics of the sequencing data and the broad scope of downstream tasks mean that a sophisticated and versatile computational method is urgently needed. Here we introduce EpiAgent, a foundation model pretrained on our manually curated large-scale Human-scATAC-Corpus. EpiAgent encodes chromatin accessibility patterns of cells as concise 'cell sentences' and captures cellular heterogeneity behind regulatory networks via bidirectional attention. Comprehensive benchmarks show that EpiAgent excels in typical downstream tasks, including unsupervised feature extraction, supervised cell type annotation and data imputation. By incorporating external embeddings, EpiAgent enables effective cellular response prediction for both out-of-sample stimulated and unseen genetic perturbations, reference data integration and query data mapping. Through in silico knockout of cis-regulatory elements, EpiAgent demonstrates the potential to model cell state changes. EpiAgent is further extended to directly annotate cell types in a zero-shot manner.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02822-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Although single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) enables the exploration of the epigenomic landscape that governs transcription at the cellular level, the complicated characteristics of the sequencing data and the broad scope of downstream tasks mean that a sophisticated and versatile computational method is urgently needed. Here we introduce EpiAgent, a foundation model pretrained on our manually curated large-scale Human-scATAC-Corpus. EpiAgent encodes chromatin accessibility patterns of cells as concise 'cell sentences' and captures cellular heterogeneity behind regulatory networks via bidirectional attention. Comprehensive benchmarks show that EpiAgent excels in typical downstream tasks, including unsupervised feature extraction, supervised cell type annotation and data imputation. By incorporating external embeddings, EpiAgent enables effective cellular response prediction for both out-of-sample stimulated and unseen genetic perturbations, reference data integration and query data mapping. Through in silico knockout of cis-regulatory elements, EpiAgent demonstrates the potential to model cell state changes. EpiAgent is further extended to directly annotate cell types in a zero-shot manner.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.