Design of Electrostatic Nanocomplex of Semaglutide with Protamine and Zinc for Subcutaneous Prolonged Delivery.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-11 DOI:10.3390/nano15181399
In Gyu Yang, Jeong-Soo Kim, Myung Joo Kang
{"title":"Design of Electrostatic Nanocomplex of Semaglutide with Protamine and Zinc for Subcutaneous Prolonged Delivery.","authors":"In Gyu Yang, Jeong-Soo Kim, Myung Joo Kang","doi":"10.3390/nano15181399","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to design a poorly water-soluble electrostatic nanocomplex of semaglutide (SMG) with protamine sulfate (PS) and zinc ions (Zn) for prolonged subcutaneous delivery. Complexation of SMG with the cationic peptide PS increased the lipophilicity (logP) proportionally from -4.7 to 0.3, particularly in the presence of Zn. The optimized nanocomplex exhibited spherical morphology, an amorphous state, a particle size of 196.0 nm, and a zeta potential of -45.7 mV. In an in vitro dissolution test under sink conditions, native SMG showed rapid drug release with 98% dissolution within 24 h. In contrast, the nanocomplexes showed markedly delayed release, with a concentration-dependent relationship between PS/Zn contents and SMG release rate, exhibiting 19% drug release over 7 days in the optimized formula. These findings suggest that the proposed nanocomplex is a promising system for long-acting injectable delivery of SMG, potentially enhancing patient compliance in patients with obesity or type 2 diabetes.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181399","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to design a poorly water-soluble electrostatic nanocomplex of semaglutide (SMG) with protamine sulfate (PS) and zinc ions (Zn) for prolonged subcutaneous delivery. Complexation of SMG with the cationic peptide PS increased the lipophilicity (logP) proportionally from -4.7 to 0.3, particularly in the presence of Zn. The optimized nanocomplex exhibited spherical morphology, an amorphous state, a particle size of 196.0 nm, and a zeta potential of -45.7 mV. In an in vitro dissolution test under sink conditions, native SMG showed rapid drug release with 98% dissolution within 24 h. In contrast, the nanocomplexes showed markedly delayed release, with a concentration-dependent relationship between PS/Zn contents and SMG release rate, exhibiting 19% drug release over 7 days in the optimized formula. These findings suggest that the proposed nanocomplex is a promising system for long-acting injectable delivery of SMG, potentially enhancing patient compliance in patients with obesity or type 2 diabetes.

西马鲁肽-鱼精蛋白-锌静电纳米复合物皮下长效递送的设计。
本研究的目的是设计一种低水溶性的西马鲁肽(SMG)与鱼精蛋白硫酸盐(PS)和锌离子(Zn)的静电纳米复合物,用于长期皮下递送。SMG与阳离子肽PS络合使其亲脂性(logP)从-4.7增加到0.3,特别是在Zn存在下。优化后的纳米配合物呈球形、无定形,粒径为196.0 nm, zeta电位为-45.7 mV。体外溶出试验表明,天然SMG在24 h内快速释放,溶出度达98%。而纳米配合物的释放时间明显延迟,且PS/Zn含量与SMG的释放率呈浓度依赖关系,7 d内释放率为19%。这些发现表明,所提出的纳米复合物是一种很有前途的长效注射给药系统,可能会提高肥胖或2型糖尿病患者的依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信