Alexandra Ivanova, Mina Todorova, Dimitar Petrov, Zhana Petkova, Olga Teneva, Ginka Antova, Maria Angelova-Romova, Velichka Yanakieva, Slava Tsoneva, Vera Gledacheva, Krastena Nikolova, Daniela Karashanova, Stoyanka Nikolova
{"title":"From <i>Spirulina platensis</i> to Nanomaterials: A Comparative Study of AgNPs Obtained from Two Extracts.","authors":"Alexandra Ivanova, Mina Todorova, Dimitar Petrov, Zhana Petkova, Olga Teneva, Ginka Antova, Maria Angelova-Romova, Velichka Yanakieva, Slava Tsoneva, Vera Gledacheva, Krastena Nikolova, Daniela Karashanova, Stoyanka Nikolova","doi":"10.3390/nano15181392","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the synthesis and characterization of silver nanoparticles (AgNPs) using two <i>Spirulina platensis</i> extracts: one of them cultivated in a bioreactor in Bulgaria (near Varvara village), and the other one from the local market in Bulgaria (Dragon Superfoods). To assess their properties and stability, ATR-FTIR, TEM (Transmission Electron Microscopy) images, and zeta potential were used. Chemical content of the extracts and AgNPs obtained were assessed, as well as their antimicrobial and anti-inflammatory activities. We found that the extracts' origin significantly influenced nanoparticle morphology, surface charge, and bioactivity. AgNPs were spherical and different in size from Bioreactor 4-8 nm, while Dragon obtained larger particles, about 20 nm. We found that synthesis altered the chemical content of the extracts, particularly in lipid, protein, and tocopherol content, suggesting active involvement of Spirulina-derived biomolecules in nanoparticle formation. Antimicrobial assays showed slightly higher activity for Dragon AgNPs against <i>P. aeruginosa</i> (21 mm) and <i>S. enteritidis</i> (23 mm), with similar effects against <i>L. monocytogenes</i> and <i>S. aureus</i>. At 2.5 mg/mL, both samples protected human albumin from thermal denaturation more effectively (23.36% and 20.07%) than prednisolone (16.99%). Based on the obtained results, AgNPs from <i>Spirulina platensis</i> can be attributed as multifunctional agents with anti-inflammatory and antimicrobial activity.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181392","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis and characterization of silver nanoparticles (AgNPs) using two Spirulina platensis extracts: one of them cultivated in a bioreactor in Bulgaria (near Varvara village), and the other one from the local market in Bulgaria (Dragon Superfoods). To assess their properties and stability, ATR-FTIR, TEM (Transmission Electron Microscopy) images, and zeta potential were used. Chemical content of the extracts and AgNPs obtained were assessed, as well as their antimicrobial and anti-inflammatory activities. We found that the extracts' origin significantly influenced nanoparticle morphology, surface charge, and bioactivity. AgNPs were spherical and different in size from Bioreactor 4-8 nm, while Dragon obtained larger particles, about 20 nm. We found that synthesis altered the chemical content of the extracts, particularly in lipid, protein, and tocopherol content, suggesting active involvement of Spirulina-derived biomolecules in nanoparticle formation. Antimicrobial assays showed slightly higher activity for Dragon AgNPs against P. aeruginosa (21 mm) and S. enteritidis (23 mm), with similar effects against L. monocytogenes and S. aureus. At 2.5 mg/mL, both samples protected human albumin from thermal denaturation more effectively (23.36% and 20.07%) than prednisolone (16.99%). Based on the obtained results, AgNPs from Spirulina platensis can be attributed as multifunctional agents with anti-inflammatory and antimicrobial activity.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.