{"title":"X-Ray Irradiation Improved WSe<sub>2</sub> Optical-Electrical Synapse for Handwritten Digit Recognition.","authors":"Chuanwen Chen, Qi Sun, Yaxian Lu, Ping Chen","doi":"10.3390/nano15181408","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) materials are promising candidates for neuromorphic computing owing to their atomically thin structure and tunable optoelectronic properties. However, achieving controllable synaptic behavior via defect engineering remains challenging. In this work, we introduce X-ray irradiation as a facile strategy to modulate defect states and enhance synaptic plasticity in WSe<sub>2</sub>-based optoelectronic synapses. The introduction of selenium vacancies via irradiation significantly improved both electrical and optical responses. Under electrical stimulation, short-term potentiation (STP) exhibited enhanced excitatory postsynaptic current (EPSC) retention exceeding 10%, measured 20 s after the stimulation peak. In addition, the nonlinearity of long-term potentiation (LTP) and long-term depression (LTD) was reduced, and the signal decay time was extended. Under optical stimulation, STP showed more than 4% improvement in EPSC retention at 16 s with similar relaxation enhancement. These effects are attributed to irradiation-induced defect states that facilitate charge carrier trapping and extend signal persistence. Moreover, the reduced nonlinearity in synaptic weight modulation improved the recognition accuracy of handwritten digits in a CrossSim-simulated MNIST task, increasing from 88.5% to 93.75%. This study demonstrates that X-ray irradiation is an effective method for modulating synaptic weights in 2D materials, offering a universal strategy for defect engineering in neuromorphic device applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181408","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials are promising candidates for neuromorphic computing owing to their atomically thin structure and tunable optoelectronic properties. However, achieving controllable synaptic behavior via defect engineering remains challenging. In this work, we introduce X-ray irradiation as a facile strategy to modulate defect states and enhance synaptic plasticity in WSe2-based optoelectronic synapses. The introduction of selenium vacancies via irradiation significantly improved both electrical and optical responses. Under electrical stimulation, short-term potentiation (STP) exhibited enhanced excitatory postsynaptic current (EPSC) retention exceeding 10%, measured 20 s after the stimulation peak. In addition, the nonlinearity of long-term potentiation (LTP) and long-term depression (LTD) was reduced, and the signal decay time was extended. Under optical stimulation, STP showed more than 4% improvement in EPSC retention at 16 s with similar relaxation enhancement. These effects are attributed to irradiation-induced defect states that facilitate charge carrier trapping and extend signal persistence. Moreover, the reduced nonlinearity in synaptic weight modulation improved the recognition accuracy of handwritten digits in a CrossSim-simulated MNIST task, increasing from 88.5% to 93.75%. This study demonstrates that X-ray irradiation is an effective method for modulating synaptic weights in 2D materials, offering a universal strategy for defect engineering in neuromorphic device applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.