Junda Zhao, Guanhua Liu, Xiaobing Zheng, Liya Zhou, Li Ma, Ying He, Xiaoyang Yue, Yanjun Jiang
{"title":"Covalent Organic Framework-Based Nanomembrane with Co-Immobilized Dual Enzymes for Micropollutant Removal.","authors":"Junda Zhao, Guanhua Liu, Xiaobing Zheng, Liya Zhou, Li Ma, Ying He, Xiaoyang Yue, Yanjun Jiang","doi":"10.3390/nano15181431","DOIUrl":null,"url":null,"abstract":"<p><p>Biocatalytic nanomembranes have emerged as promising platforms for micropollutant remediation, yet their practical application is hindered by limitations in removal efficiency and operational stability. This study presents an innovative approach for fabricating highly stable and efficient biocatalytic nanomembranes through the co-immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOx) within a covalent organic framework (COF) nanocrystal. Capitalizing on the dynamic covalent chemistry of COFs during their self-healing and self-crystallization processes, we achieved simultaneous enzyme immobilization and framework formation. This unique confinement strategy preserved enzymatic activity while significantly enhancing stability. HRP/GOx@COF biocatalytic membrane was prepared through the loading of immobilized enzymes (HRP/GOx@COF) onto a macroporous polymeric substrate membrane pre-coated with a polydopamine (PDA) adhesive layer. At HRP and GOx dosages of 4 mg and 4.5 mg, respectively, and a glucose concentration of 5 mM, the removal rate of bisphenol A (BPA) reached 99% through the combined functions of catalysis, adsorption, and rejection. The BPA removal rate of the biocatalytic membrane remained high under both acidic and alkaline conditions. Additionally, the removal rate of dyes with different properties exceeded 88%. The removal efficiencies of doxycycline hydrochloride, 2,4-dichlorophenol, and 8-hydroxyquinoline surpassed 95%. In this study, the enzyme was confined in the ordered and stable COF, which endowed the biocatalytic membrane with good stability and reusability over multiple batch cycles.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181431","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biocatalytic nanomembranes have emerged as promising platforms for micropollutant remediation, yet their practical application is hindered by limitations in removal efficiency and operational stability. This study presents an innovative approach for fabricating highly stable and efficient biocatalytic nanomembranes through the co-immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOx) within a covalent organic framework (COF) nanocrystal. Capitalizing on the dynamic covalent chemistry of COFs during their self-healing and self-crystallization processes, we achieved simultaneous enzyme immobilization and framework formation. This unique confinement strategy preserved enzymatic activity while significantly enhancing stability. HRP/GOx@COF biocatalytic membrane was prepared through the loading of immobilized enzymes (HRP/GOx@COF) onto a macroporous polymeric substrate membrane pre-coated with a polydopamine (PDA) adhesive layer. At HRP and GOx dosages of 4 mg and 4.5 mg, respectively, and a glucose concentration of 5 mM, the removal rate of bisphenol A (BPA) reached 99% through the combined functions of catalysis, adsorption, and rejection. The BPA removal rate of the biocatalytic membrane remained high under both acidic and alkaline conditions. Additionally, the removal rate of dyes with different properties exceeded 88%. The removal efficiencies of doxycycline hydrochloride, 2,4-dichlorophenol, and 8-hydroxyquinoline surpassed 95%. In this study, the enzyme was confined in the ordered and stable COF, which endowed the biocatalytic membrane with good stability and reusability over multiple batch cycles.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.