Yuting Li, Xiaoguang Mu, Yuqiang Yang, Han Xia, Yuying Zhang, Chengyu Mo, Zhihao Huang, Yitong Li, Fujiang Li
{"title":"Virtual Vernier Effect-Enabled Parallel Dual-Cavity Sensor for Temperature and Humidity Synchronization.","authors":"Yuting Li, Xiaoguang Mu, Yuqiang Yang, Han Xia, Yuying Zhang, Chengyu Mo, Zhihao Huang, Yitong Li, Fujiang Li","doi":"10.3390/nano15181427","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a high-sensitivity temperature and humidity synchronous measurement sensor based on virtual Vernier demodulation, designed to overcome the limitations of traditional sensors in high-sensitivity and synchronous measurements. By combining a dual-cavity parallel structure with the Virtual Vernier effect (VVE), two interferometers were designed, with one using a temperature-sensitive material (polydimethylsiloxane, PDMS) and the other using a humidity-sensitive material (polyvinyl alcohol, PVA) for temperature and humidity measurement, respectively. Based on actual interference spectra, a modulation function was used to generate the virtual reference interferometer spectrum, which was then superimposed with the sensing interferometer's spectrum to form a virtual Vernier envelope. By monitoring the displacement of the envelope, precise measurements of temperature and humidity changes were achieved. Experimental results showed a temperature sensitivity of 5.61 nm/°C and 7.62 nm/°C, a humidity sensitivity of 0 nm/%RH and -3.07 nm/%RH, and average errors of 0.64% and 1.10% for temperature and humidity, respectively, demonstrating the feasibility of the method. The introduction of the virtual interferometer effectively reduces environmental interference with the measurement results and avoids the material loss and errors associated with traditional reference interferometers. More importantly, the VVE enables dynamic adjustment of the envelope magnification, thereby enhancing the sensor's flexibility and overcoming the structural limitations of traditional interferometers. This sensor provides efficient and reliable technological support for future environmental monitoring and climate change research.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a high-sensitivity temperature and humidity synchronous measurement sensor based on virtual Vernier demodulation, designed to overcome the limitations of traditional sensors in high-sensitivity and synchronous measurements. By combining a dual-cavity parallel structure with the Virtual Vernier effect (VVE), two interferometers were designed, with one using a temperature-sensitive material (polydimethylsiloxane, PDMS) and the other using a humidity-sensitive material (polyvinyl alcohol, PVA) for temperature and humidity measurement, respectively. Based on actual interference spectra, a modulation function was used to generate the virtual reference interferometer spectrum, which was then superimposed with the sensing interferometer's spectrum to form a virtual Vernier envelope. By monitoring the displacement of the envelope, precise measurements of temperature and humidity changes were achieved. Experimental results showed a temperature sensitivity of 5.61 nm/°C and 7.62 nm/°C, a humidity sensitivity of 0 nm/%RH and -3.07 nm/%RH, and average errors of 0.64% and 1.10% for temperature and humidity, respectively, demonstrating the feasibility of the method. The introduction of the virtual interferometer effectively reduces environmental interference with the measurement results and avoids the material loss and errors associated with traditional reference interferometers. More importantly, the VVE enables dynamic adjustment of the envelope magnification, thereby enhancing the sensor's flexibility and overcoming the structural limitations of traditional interferometers. This sensor provides efficient and reliable technological support for future environmental monitoring and climate change research.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.