Sara Nahle, Hilary Cassidy, David Matallanas, Bertrand H Rihn, Olivier Joubert, Luc Ferrari
{"title":"Single- vs. Multi-Walled Carbon Nanotubes: Differential Cellular Stress and Lipid Metabolism Effects in Macrophage Models.","authors":"Sara Nahle, Hilary Cassidy, David Matallanas, Bertrand H Rihn, Olivier Joubert, Luc Ferrari","doi":"10.3390/nano15181401","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the toxicological effects of carbon nanotubes (CNTs) of different diameters-single-walled CNTs (SWCNT, 2 nm) and multi-walled CNTs (MWCNT, 74 nm)-on two macrophage cell lines, rat alveolar NR8383 cells and human differentiated THP-1. Using standardized exposure conditions and employing an integrated omics approach (transcriptomic and proteomic analyses), both CNT types were found to induce cellular stress responses and inflammation, especially in NR8383 cells, with notable involvement of the Sirtuin signaling pathway. After 24 h, MWCNTs uniquely disrupted lipid metabolism in NR8383 cells, resulting in foam cell formation and syncytia. While SWCNTs were less disruptive to metabolic pathways, they significantly altered gene regulation, particularly RNA splicing mechanisms. The dispersion medium-fetal bovine serum (FBS) versus human surfactant-also modulated the observed toxicological responses, highlighting the critical role of the protein corona in influencing CNT-cell interactions. These findings demonstrate that CNT diameter significantly affects cytotoxicity and cellular response pathways in a cell-type-specific manner.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181401","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the toxicological effects of carbon nanotubes (CNTs) of different diameters-single-walled CNTs (SWCNT, 2 nm) and multi-walled CNTs (MWCNT, 74 nm)-on two macrophage cell lines, rat alveolar NR8383 cells and human differentiated THP-1. Using standardized exposure conditions and employing an integrated omics approach (transcriptomic and proteomic analyses), both CNT types were found to induce cellular stress responses and inflammation, especially in NR8383 cells, with notable involvement of the Sirtuin signaling pathway. After 24 h, MWCNTs uniquely disrupted lipid metabolism in NR8383 cells, resulting in foam cell formation and syncytia. While SWCNTs were less disruptive to metabolic pathways, they significantly altered gene regulation, particularly RNA splicing mechanisms. The dispersion medium-fetal bovine serum (FBS) versus human surfactant-also modulated the observed toxicological responses, highlighting the critical role of the protein corona in influencing CNT-cell interactions. These findings demonstrate that CNT diameter significantly affects cytotoxicity and cellular response pathways in a cell-type-specific manner.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.