Bingsheng Yang, Jianwen Su, Jichang Wu, Zhongwen Wang, Jin Hu, Mankai Yang, Yihuang Lin, Mingchao Jin, Xiaochun Bai, Bin Yu, Xianrong Zhang
{"title":"Macrophage-derived amphiregulin induces myofibroblast transition in adipogenic lineage precursors near Staphylococcus aureus abscess in bone marrow.","authors":"Bingsheng Yang, Jianwen Su, Jichang Wu, Zhongwen Wang, Jin Hu, Mankai Yang, Yihuang Lin, Mingchao Jin, Xiaochun Bai, Bin Yu, Xianrong Zhang","doi":"10.1038/s41467-025-63551-7","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of Staphylococcus aureus (S. aureus) abscesses is a well-established determinant of persistent skeletal infections, yet the mechanisms underlying bacterial persistence remain elusive. Here, we demonstrate that bone marrow adiponectin-positive (Adipoq<sup>+</sup>) precursors are mobilized to surround S. aureus abscesses and undergo myofibroblast differentiation. This phenotypic transition induces vascular constriction, thereby impairing local perfusion and impeding effective bacterial clearance. Mechanistically, macrophage-derived amphiregulin (AREG) activates EGFR signaling on Adipoq<sup>+</sup> cells, triggering the mTOR/YAP pathway to drive their myofibroblast transition. Importantly, genetic ablation of Adipoq<sup>+</sup> cells, cell-specific deletion of the AREG/EGFR axis, or pharmacological inhibition of EGFR/mTOR signaling effectively alleviates fibrosis, restores vascular perfusion and antibiotic delivery, and promotes bacterial eradication from abscesses. Our findings implicate a macrophage-Adipoq<sup>+</sup> cell regulatory axis that sustains S. aureus persistence in osteomyelitis and identify therapeutic targeting of this axis as a strategy to enhance antibiotic efficacy against S. aureus skeletal infections.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8409"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63551-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of Staphylococcus aureus (S. aureus) abscesses is a well-established determinant of persistent skeletal infections, yet the mechanisms underlying bacterial persistence remain elusive. Here, we demonstrate that bone marrow adiponectin-positive (Adipoq+) precursors are mobilized to surround S. aureus abscesses and undergo myofibroblast differentiation. This phenotypic transition induces vascular constriction, thereby impairing local perfusion and impeding effective bacterial clearance. Mechanistically, macrophage-derived amphiregulin (AREG) activates EGFR signaling on Adipoq+ cells, triggering the mTOR/YAP pathway to drive their myofibroblast transition. Importantly, genetic ablation of Adipoq+ cells, cell-specific deletion of the AREG/EGFR axis, or pharmacological inhibition of EGFR/mTOR signaling effectively alleviates fibrosis, restores vascular perfusion and antibiotic delivery, and promotes bacterial eradication from abscesses. Our findings implicate a macrophage-Adipoq+ cell regulatory axis that sustains S. aureus persistence in osteomyelitis and identify therapeutic targeting of this axis as a strategy to enhance antibiotic efficacy against S. aureus skeletal infections.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.