Houda Bellahsene, Saad Sene, Gautier Félix, Nicolas Fabregue, Michel Marcos, Arnaud Uhart, Jean-Charles Dupin, Erwan Oliviero, Joulia Larionova, Marc Ferrari, Yannick Guari
{"title":"Chemical Mechanical Polishing of Zerodur<sup>®</sup> Using Silica and Ceria Nanoparticles: Toward Ultra-Smooth Optical Surfaces.","authors":"Houda Bellahsene, Saad Sene, Gautier Félix, Nicolas Fabregue, Michel Marcos, Arnaud Uhart, Jean-Charles Dupin, Erwan Oliviero, Joulia Larionova, Marc Ferrari, Yannick Guari","doi":"10.3390/nano15181391","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates hyperpolishing of Zerodur<sup>®</sup> substrates via chemical-mechanical polishing (CMP) using silica (SiO<sub>2</sub>) and ceria (CeO<sub>2</sub>) nanoparticles as controlled nano-abrasives. A pre-polishing stress-mirror stage was combined with systematic use of nanoparticles of variable size to evaluate surface-state evolution via optical rugosimeter, HRSEM, cross-sectional HRTEM, and XPS. A set of hexagonal mirrors with a circumscribed diameter of 30 mm was polished for one hour with each nanoparticle type. All tested slurries significantly improved surface quality, with both the smallest (37 nm) and largest (209 nm) SiO<sub>2</sub> particles achieving similar final roughness, though larger particles showed a slight performance advantage that could be offset by longer polishing with smaller particles. CeO<sub>2</sub> nanoparticles (30 nm) produced even better process efficiency and surface finishes than 37 nm SiO<sub>2</sub>, demonstrating higher chemical-mechanical polishing efficiency with CeO<sub>2</sub>. Sequential polishing strategies, first with 209 nm SiO<sub>2</sub>, then with 37 nm SiO<sub>2</sub> and 30 nm CeO<sub>2</sub>, also enhanced surface quality, confirming trends from single-particle trials. One of the most effective protocols was adapted and scaled up to 135 mm Zerodur<sup>®</sup> mirrors with spherical and plano geometries, representative of precision optical components. The strategic approach adopted to achieve a high-quality surface finish in a reduced processing time relies on the sequential use of nanoparticles acting as complementary nano-abrasives. Indeed, applying two hours of polishing with 209 nm SiO<sub>2</sub> followed by two hours with 37 nm SiO<sub>2</sub> yielded exceptional results, with area roughness (Sa) values of 1 Å for spherical and 0.9 Å for plano surfaces. These results demonstrate the capability of nanoparticle-assisted CMP to produce sub-nanometric surface finishes and offer a robust, scalable approach for high-end optical manufacturing.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181391","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates hyperpolishing of Zerodur® substrates via chemical-mechanical polishing (CMP) using silica (SiO2) and ceria (CeO2) nanoparticles as controlled nano-abrasives. A pre-polishing stress-mirror stage was combined with systematic use of nanoparticles of variable size to evaluate surface-state evolution via optical rugosimeter, HRSEM, cross-sectional HRTEM, and XPS. A set of hexagonal mirrors with a circumscribed diameter of 30 mm was polished for one hour with each nanoparticle type. All tested slurries significantly improved surface quality, with both the smallest (37 nm) and largest (209 nm) SiO2 particles achieving similar final roughness, though larger particles showed a slight performance advantage that could be offset by longer polishing with smaller particles. CeO2 nanoparticles (30 nm) produced even better process efficiency and surface finishes than 37 nm SiO2, demonstrating higher chemical-mechanical polishing efficiency with CeO2. Sequential polishing strategies, first with 209 nm SiO2, then with 37 nm SiO2 and 30 nm CeO2, also enhanced surface quality, confirming trends from single-particle trials. One of the most effective protocols was adapted and scaled up to 135 mm Zerodur® mirrors with spherical and plano geometries, representative of precision optical components. The strategic approach adopted to achieve a high-quality surface finish in a reduced processing time relies on the sequential use of nanoparticles acting as complementary nano-abrasives. Indeed, applying two hours of polishing with 209 nm SiO2 followed by two hours with 37 nm SiO2 yielded exceptional results, with area roughness (Sa) values of 1 Å for spherical and 0.9 Å for plano surfaces. These results demonstrate the capability of nanoparticle-assisted CMP to produce sub-nanometric surface finishes and offer a robust, scalable approach for high-end optical manufacturing.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.