Federica Paladini, Fabiana D'Urso, Francesco Broccolo, Mauro Pollini
{"title":"Combating Healthcare-Associated Infections in Modern Hospitals: Nanotechnology-Based Approaches in the Era of Antimicrobial Resistance.","authors":"Federica Paladini, Fabiana D'Urso, Francesco Broccolo, Mauro Pollini","doi":"10.3390/nano15181405","DOIUrl":null,"url":null,"abstract":"<p><p>Healthcare-associated infections (HAIs) represent one of the most persistent challenges in modern healthcare delivery, affecting millions of patients worldwide and imposing substantial clinical and economic burdens on healthcare systems. The emergence of antimicrobial resistance (AMR) has further complicated infection management, creating an urgent need for innovative therapeutic and preventive strategies. Current strategies for combating AMR in hospital settings encompass comprehensive infection prevention and control measures, antimicrobial stewardship programs, enhanced environmental cleaning protocols and innovative surface modification technologies. Nanotechnology has emerged as a valuable approach to address the limitations of conventional antimicrobial strategies. Various nanomaterial categories offer innovative platforms for developing novel treatment strategies and for providing advantages including reduced toxicity through lower dosage requirements, diminished resistance development potential, and enhanced antibacterial effects through combined action mechanisms. Particularly, metal-based nanoparticles and their oxides demonstrate exceptional antimicrobial properties through multiple mechanisms including membrane damage, protein binding and reactive oxygen species generation. This comprehensive review examines the current landscape of hospital-acquired infections, the growing threat of antimicrobial resistance, and the promising role of nanotechnology-based solutions, with particular emphasis on silver nanoparticles as innovative tool for HAI control in clinical settings. Recent advances in nanotechnology-enabled antimicrobial coatings are assessed along with their clinical translation in hospital settings, identifying key barriers concerning material durability, safety profiles, and regulatory pathways.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181405","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Healthcare-associated infections (HAIs) represent one of the most persistent challenges in modern healthcare delivery, affecting millions of patients worldwide and imposing substantial clinical and economic burdens on healthcare systems. The emergence of antimicrobial resistance (AMR) has further complicated infection management, creating an urgent need for innovative therapeutic and preventive strategies. Current strategies for combating AMR in hospital settings encompass comprehensive infection prevention and control measures, antimicrobial stewardship programs, enhanced environmental cleaning protocols and innovative surface modification technologies. Nanotechnology has emerged as a valuable approach to address the limitations of conventional antimicrobial strategies. Various nanomaterial categories offer innovative platforms for developing novel treatment strategies and for providing advantages including reduced toxicity through lower dosage requirements, diminished resistance development potential, and enhanced antibacterial effects through combined action mechanisms. Particularly, metal-based nanoparticles and their oxides demonstrate exceptional antimicrobial properties through multiple mechanisms including membrane damage, protein binding and reactive oxygen species generation. This comprehensive review examines the current landscape of hospital-acquired infections, the growing threat of antimicrobial resistance, and the promising role of nanotechnology-based solutions, with particular emphasis on silver nanoparticles as innovative tool for HAI control in clinical settings. Recent advances in nanotechnology-enabled antimicrobial coatings are assessed along with their clinical translation in hospital settings, identifying key barriers concerning material durability, safety profiles, and regulatory pathways.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.