Research Progress in Carbon Nanotube-Based Cold Cathode Electron Guns.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-12 DOI:10.3390/nano15181403
Jiupeng Li, Yu Tu, Dewei Ma, Yun Yang
{"title":"Research Progress in Carbon Nanotube-Based Cold Cathode Electron Guns.","authors":"Jiupeng Li, Yu Tu, Dewei Ma, Yun Yang","doi":"10.3390/nano15181403","DOIUrl":null,"url":null,"abstract":"<p><p>Field emission (FE) cold-cathodes have some important characteristics, including instant turn-on, room temperature operation, miniaturization, low power consumption, and nonlinearity. As emitters, Carbon nanotubes (CNTs) exhibit a high field enhancement factor, low turn-on voltage, high current density, high thermal conductivity, and temporal stability. These properties make them highly suitable for applications in FE cold-cathodes. In addition, Carbon nanotube (CNT) cold cathodes have specialized applications in electron beams, which are modulated by high-frequency electric fields and exhibit low energy dispersion. There have been substantial studies on CNT-based cold cathode electron guns with diverse structural configurations. These studies have laid the foundation for the applications of microwave vacuum electron devices, X-ray equipments, flat-panel displays, and scanning electron microscopes. The review primarily introduces cold cathode electron guns based on CNT emitters with diverse morphologies, including disordered CNTs, aligned CNTs, CNT paste, and other CNTs with special surface morphologies. Additionally, the research results of microwave electron guns based on CNT cathodes are also mentioned. Finally, the problems that need to be resolved in the practical applications of CNT cold cathode electron guns are summarized, and some suggestions for future development are provided.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181403","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Field emission (FE) cold-cathodes have some important characteristics, including instant turn-on, room temperature operation, miniaturization, low power consumption, and nonlinearity. As emitters, Carbon nanotubes (CNTs) exhibit a high field enhancement factor, low turn-on voltage, high current density, high thermal conductivity, and temporal stability. These properties make them highly suitable for applications in FE cold-cathodes. In addition, Carbon nanotube (CNT) cold cathodes have specialized applications in electron beams, which are modulated by high-frequency electric fields and exhibit low energy dispersion. There have been substantial studies on CNT-based cold cathode electron guns with diverse structural configurations. These studies have laid the foundation for the applications of microwave vacuum electron devices, X-ray equipments, flat-panel displays, and scanning electron microscopes. The review primarily introduces cold cathode electron guns based on CNT emitters with diverse morphologies, including disordered CNTs, aligned CNTs, CNT paste, and other CNTs with special surface morphologies. Additionally, the research results of microwave electron guns based on CNT cathodes are also mentioned. Finally, the problems that need to be resolved in the practical applications of CNT cold cathode electron guns are summarized, and some suggestions for future development are provided.

碳纳米管冷阴极电子枪的研究进展。
场发射冷阴极具有瞬时导通、室温工作、小型化、低功耗和非线性等重要特性。作为发射材料,碳纳米管(CNTs)具有高场增强因子、低导通电压、高电流密度、高导热性和时间稳定性。这些特性使它们非常适合应用于FE冷阴极。此外,碳纳米管(CNT)冷阴极在电子束中有专门的应用,电子束由高频电场调制,具有低能量色散。基于碳纳米管的不同结构的冷阴极电子枪已经得到了大量的研究。这些研究为微波真空电子器件、x射线设备、平板显示器和扫描电子显微镜的应用奠定了基础。本文主要介绍了基于不同形貌碳纳米管发射器的冷阴极电子枪,包括无序碳纳米管、排列碳纳米管、碳纳米管粘贴体和其他具有特殊表面形貌的碳纳米管。此外,还介绍了基于碳纳米管阴极的微波电子枪的研究成果。最后,总结了碳纳米管冷阴极电子枪在实际应用中需要解决的问题,并对今后的发展提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信