G Ventura, M Bianco, I Losito, T R I Cataldi, C D Calvano
{"title":"MALDI mass spectrometry imaging in plant and food lipidomics: advances, challenges, and future perspectives.","authors":"G Ventura, M Bianco, I Losito, T R I Cataldi, C D Calvano","doi":"10.1039/d5mo00116a","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has established itself as a powerful analytical technique for spatially resolved lipidomics, offering unique insights into lipid distribution and metabolism directly within plant and food matrices. Recent methodological and technological advances have markedly improved the spatial resolution, sensitivity, and selectivity of MALDI-MSI, enabling high-definition mapping of complex lipidomes down to the cellular level. This review presents the current state of MALDI-MSI applications in plant and food lipidomics, with a focus on studies that have advanced our understanding of lipid heterogeneity, metabolic pathways, and spatial lipid organization. Special attention is given to the analytical challenges associated with lipid structural diversity, particularly isomerism and isobarism, and to the strategies developed to address these limitations. Emerging applications involving stable isotope labelling, advanced ion mobility spectrometry, and chemical derivatization are also discussed, highlighting their potential to enhance lipid identification and spatial localization. Finally, the review outlines future perspectives, emphasizing the integration of MALDI-MSI with complementary omics approaches and advanced computational tools to accelerate discoveries in plant biology, food quality assessment, and nutritional science.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d5mo00116a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has established itself as a powerful analytical technique for spatially resolved lipidomics, offering unique insights into lipid distribution and metabolism directly within plant and food matrices. Recent methodological and technological advances have markedly improved the spatial resolution, sensitivity, and selectivity of MALDI-MSI, enabling high-definition mapping of complex lipidomes down to the cellular level. This review presents the current state of MALDI-MSI applications in plant and food lipidomics, with a focus on studies that have advanced our understanding of lipid heterogeneity, metabolic pathways, and spatial lipid organization. Special attention is given to the analytical challenges associated with lipid structural diversity, particularly isomerism and isobarism, and to the strategies developed to address these limitations. Emerging applications involving stable isotope labelling, advanced ion mobility spectrometry, and chemical derivatization are also discussed, highlighting their potential to enhance lipid identification and spatial localization. Finally, the review outlines future perspectives, emphasizing the integration of MALDI-MSI with complementary omics approaches and advanced computational tools to accelerate discoveries in plant biology, food quality assessment, and nutritional science.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.