{"title":"Characterization of Alginate Utilization Strategy in a Novel Marine <i>Bacteroidetes</i>: Insights from <i>Roseihalotalea indica</i> gen. nov. sp. nov. TK19036<sup>T</sup>.","authors":"Zheng Fu, Shunqin You, Defang Wu, Runying Zeng, Kai Tang, Zhuhua Chan","doi":"10.3390/md23090334","DOIUrl":null,"url":null,"abstract":"<p><p>Alginate, a major polysaccharide in brown algae, is vital for the carbon cycling of the ocean ecosystem and holds promise for biotechnological applications. Marine <i>Bacteroidetes</i>, known for the ability to degrade complex polysaccharides, play an important role in the ocean carbon cycle; however, the detailed alginate degradation pattern remains to be further explored. In this study, an alginate utilization locus was identified in the genome of a new marine <i>Bacteroidetes</i>, <i>Roseihalotalea indica</i> gen. nov. sp. nov. TK19036<sup>T</sup>, and encodes two new alginate lyases, RiAlyPL6 and RiAlyPL17, which play potential roles in the degradation and utilization of alginate. RiAlyPL6 and RiAlyPL17 have distinct degradation products and substrate preferences, revealing the adaptation of the strain to utilize alginate with different M/G ratios. Based on the results in this paper, we have proposed a model for the degradation and utilization mechanism of alginate in <i>Roseihalotalea indica</i> gen. nov. sp. nov. TK19036<sup>T</sup>. All in all, our research provides a new insight into the alginate mechanisms within marine <i>Roseihalotalea</i>, and the two novel alginate lyases are excellent candidates for preparation and application.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23090334","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alginate, a major polysaccharide in brown algae, is vital for the carbon cycling of the ocean ecosystem and holds promise for biotechnological applications. Marine Bacteroidetes, known for the ability to degrade complex polysaccharides, play an important role in the ocean carbon cycle; however, the detailed alginate degradation pattern remains to be further explored. In this study, an alginate utilization locus was identified in the genome of a new marine Bacteroidetes, Roseihalotalea indica gen. nov. sp. nov. TK19036T, and encodes two new alginate lyases, RiAlyPL6 and RiAlyPL17, which play potential roles in the degradation and utilization of alginate. RiAlyPL6 and RiAlyPL17 have distinct degradation products and substrate preferences, revealing the adaptation of the strain to utilize alginate with different M/G ratios. Based on the results in this paper, we have proposed a model for the degradation and utilization mechanism of alginate in Roseihalotalea indica gen. nov. sp. nov. TK19036T. All in all, our research provides a new insight into the alginate mechanisms within marine Roseihalotalea, and the two novel alginate lyases are excellent candidates for preparation and application.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.