Ambient Mass Spectrometry Imaging Reveals Spatiotemporal Brain Distribution and Neurotransmitter Modulation by 1,8-Cineole: An Epoxy Monoterpene in Mongolian Medicine Sugmel-3.
Jisiguleng Wu, Qier Mu, Junni Qi, Hasen Bao, Chula Sa
{"title":"Ambient Mass Spectrometry Imaging Reveals Spatiotemporal Brain Distribution and Neurotransmitter Modulation by 1,8-Cineole: An Epoxy Monoterpene in Mongolian Medicine Sugmel-3.","authors":"Jisiguleng Wu, Qier Mu, Junni Qi, Hasen Bao, Chula Sa","doi":"10.3390/metabo15090631","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> 1,8-Cineole, an epoxy monoterpene, is a key volatile component of Sugmel-3, a traditional Mongolian medicine used for treating insomnia. Although previous studies suggest that 1,8-Cineole can cross the blood-brain barrier (BBB), its precise spatiotemporal distribution in the brain and its in situ association with alterations in neurotransmitter (NT) levels remain unclear. This study utilized ambient mass spectrometry imaging (AFADESI-MSI) to investigate the dynamic brain distribution of 1,8-Cineole and its major metabolite, as well as their correlation with NT levels. <b>Methods:</b> Sprague Dawley rats (<i>n</i> = 3 per time point) received oral administration of 1,8-Cineole (65 mg/kg). Brain tissues were harvested 5 min, 30 min, 3 h, and 6 h post dose and analyzed using AFADESI-MSI. The spatial and temporal distributions of 1,8-Cineole, its metabolite 2-hydroxy-1,8-Cineole, key neurotransmitters (e.g., 5-HT, GABA, glutamine, melatonin), and related endogenous metabolites were mapped across 13 functionally distinct brain microregions. <b>Results:</b> AFADESI-MSI demonstrated rapid brain entry of 1,8-Cineole and its metabolite, with distinct spatiotemporal pharmacokinetics. The metabolite exhibited higher brain exposure, with 1,8-Cineole predominant in the cortex (CTX) and hippocampus (HP), while its metabolite showed pronounced accumulation in the pineal gland (PG), alongside CTX/HP. Region-dependent alterations in neurotransmitter levels (notably in PG, HP) correlated with drug concentrations, with observed increases in key molecules of the serotonergic and GABAergic pathways. <b>Conclusions:</b> Using AFADESI-MSI, this study provides the first spatiotemporal map of 1,8-Cineole and its metabolite in the brain. The correlation between their region-specific distribution and local neurotransmitter alterations suggests a direct mechanistic link to Sugmel-3's sedative-hypnotic efficacy, guiding future target identification.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15090631","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: 1,8-Cineole, an epoxy monoterpene, is a key volatile component of Sugmel-3, a traditional Mongolian medicine used for treating insomnia. Although previous studies suggest that 1,8-Cineole can cross the blood-brain barrier (BBB), its precise spatiotemporal distribution in the brain and its in situ association with alterations in neurotransmitter (NT) levels remain unclear. This study utilized ambient mass spectrometry imaging (AFADESI-MSI) to investigate the dynamic brain distribution of 1,8-Cineole and its major metabolite, as well as their correlation with NT levels. Methods: Sprague Dawley rats (n = 3 per time point) received oral administration of 1,8-Cineole (65 mg/kg). Brain tissues were harvested 5 min, 30 min, 3 h, and 6 h post dose and analyzed using AFADESI-MSI. The spatial and temporal distributions of 1,8-Cineole, its metabolite 2-hydroxy-1,8-Cineole, key neurotransmitters (e.g., 5-HT, GABA, glutamine, melatonin), and related endogenous metabolites were mapped across 13 functionally distinct brain microregions. Results: AFADESI-MSI demonstrated rapid brain entry of 1,8-Cineole and its metabolite, with distinct spatiotemporal pharmacokinetics. The metabolite exhibited higher brain exposure, with 1,8-Cineole predominant in the cortex (CTX) and hippocampus (HP), while its metabolite showed pronounced accumulation in the pineal gland (PG), alongside CTX/HP. Region-dependent alterations in neurotransmitter levels (notably in PG, HP) correlated with drug concentrations, with observed increases in key molecules of the serotonergic and GABAergic pathways. Conclusions: Using AFADESI-MSI, this study provides the first spatiotemporal map of 1,8-Cineole and its metabolite in the brain. The correlation between their region-specific distribution and local neurotransmitter alterations suggests a direct mechanistic link to Sugmel-3's sedative-hypnotic efficacy, guiding future target identification.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.