Tao Jiang, Yun Yang, Zening Lin, Yang Hong, Zirong Luo
{"title":"Modified Polysaccharides: Potential Biomaterials for Bioprinting.","authors":"Tao Jiang, Yun Yang, Zening Lin, Yang Hong, Zirong Luo","doi":"10.3390/jfb16090338","DOIUrl":null,"url":null,"abstract":"<p><p>Polysaccharides have emerged as promising biomaterials for 3D bioprinting due to their inherent biocompatibility, biodegradability, and structural diversity. However, their limited mechanical strength, insufficient bioactivity, and suboptimal printability hinder their direct application in fabricating complex tissue constructs. This review systematically summarizes universal modification strategies to address these challenges by tailoring polysaccharides' physicochemical and biological properties. We first analyse the fundamental requirements of bioprinting materials, emphasising on the critical role of shear-thinning behaviours, post-printing structural fidelity, and cell-instructive functions. Subsequently, we highlight the advantages and limitations of representative polysaccharides, including chitosan, alginate, and hyaluronic acid. Chemical functionalisation, physical reinforcement, and biological hybridisation are proposed as versatile approaches to synergistically enhance printability, mechanical robustness, and bioactivity to tackle the limitations. Furthermore, dynamic crosslinking mechanisms enabling self-healing and stimuli-responsive behaviours are discussed as emerging solutions for constructing biomimetic architectures. Finally, we outline future directions in balancing material processability with cellular viability and scaling up modified polysaccharides for clinical translation. This review aims to provide a design blueprint for engineering polysaccharide-based bioinks toward next-generation regenerative medicine.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090338","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polysaccharides have emerged as promising biomaterials for 3D bioprinting due to their inherent biocompatibility, biodegradability, and structural diversity. However, their limited mechanical strength, insufficient bioactivity, and suboptimal printability hinder their direct application in fabricating complex tissue constructs. This review systematically summarizes universal modification strategies to address these challenges by tailoring polysaccharides' physicochemical and biological properties. We first analyse the fundamental requirements of bioprinting materials, emphasising on the critical role of shear-thinning behaviours, post-printing structural fidelity, and cell-instructive functions. Subsequently, we highlight the advantages and limitations of representative polysaccharides, including chitosan, alginate, and hyaluronic acid. Chemical functionalisation, physical reinforcement, and biological hybridisation are proposed as versatile approaches to synergistically enhance printability, mechanical robustness, and bioactivity to tackle the limitations. Furthermore, dynamic crosslinking mechanisms enabling self-healing and stimuli-responsive behaviours are discussed as emerging solutions for constructing biomimetic architectures. Finally, we outline future directions in balancing material processability with cellular viability and scaling up modified polysaccharides for clinical translation. This review aims to provide a design blueprint for engineering polysaccharide-based bioinks toward next-generation regenerative medicine.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.