Ya Li, Siyuan Yue, Peng Li, Jing Zeng, Jianjun Guo, Dawei Xiong, Shuaiwen Zhang, Tao Deng, Lin Yuan
{"title":"Genome Sequencing and Comparative Genomics of the Hyper-Cellulolytic Fungus <i>Talaromyces pinophilus</i> Y117.","authors":"Ya Li, Siyuan Yue, Peng Li, Jing Zeng, Jianjun Guo, Dawei Xiong, Shuaiwen Zhang, Tao Deng, Lin Yuan","doi":"10.3390/jof11090614","DOIUrl":null,"url":null,"abstract":"<p><p><i>Talaromyces pinophilus</i> is a filamentous fungus with notable lignocellulose-degrading capacity based on enzyme activities and protein secretion potential, making it a compelling candidate for industrial biotechnology applications. In this study, we present the genomic characterization of the highly cellulolytic strain Y117, a domesticated variant of <i>T. pinophilus</i>, based on whole-genome sequencing and comparative genomic analysis with eleven related strains. Comprehensive analysis of CAZymes, transcription factors, and secondary metabolite diversity in <i>T. pinophilus</i> strains revealed that the exceptional lignocellulose degradation capacity of Y117 is driven by its unique genomic architecture. Key genomic features that distinguish Y117 include (1) significant expansion of glycoside hydrolase (GH) and carbohydrate-binding module (CBM) families, (2) loss of fungal-RiPP-like clusters, and (3) absence of the developmental regulator BrlA. These genomic adaptations could indicate a metabolic trade-off favoring hydrolytic enzyme production over secondary metabolism and sporulation. Our findings provide fundamental insights into fungal lignocellulose degradation mechanisms while establishing Y117 as a promising chassis for metabolic engineering applications in industrial enzyme production and heterologous protein expression.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11090614","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Talaromyces pinophilus is a filamentous fungus with notable lignocellulose-degrading capacity based on enzyme activities and protein secretion potential, making it a compelling candidate for industrial biotechnology applications. In this study, we present the genomic characterization of the highly cellulolytic strain Y117, a domesticated variant of T. pinophilus, based on whole-genome sequencing and comparative genomic analysis with eleven related strains. Comprehensive analysis of CAZymes, transcription factors, and secondary metabolite diversity in T. pinophilus strains revealed that the exceptional lignocellulose degradation capacity of Y117 is driven by its unique genomic architecture. Key genomic features that distinguish Y117 include (1) significant expansion of glycoside hydrolase (GH) and carbohydrate-binding module (CBM) families, (2) loss of fungal-RiPP-like clusters, and (3) absence of the developmental regulator BrlA. These genomic adaptations could indicate a metabolic trade-off favoring hydrolytic enzyme production over secondary metabolism and sporulation. Our findings provide fundamental insights into fungal lignocellulose degradation mechanisms while establishing Y117 as a promising chassis for metabolic engineering applications in industrial enzyme production and heterologous protein expression.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.