{"title":"Biological and Genomic Insights into <i>Fusarium acuminatum</i> Causing Needle Blight in <i>Pinus tabuliformis</i>.","authors":"Linin Song, Yuying Xu, Tianjin Liu, He Wang, Xinyue Wang, Changxiao Fu, Xiaoling Xie, Yakubu Saddeeq Abubakar, Abah Felix, Ruixian Yang, Xinhong Jing, Guodong Lu, Jiandong Bao, Wenyu Ye","doi":"10.3390/jof11090636","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese pine, <i>Pinus tabuliformis</i>, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from diseased <i>Pinus tabuliformis</i> samples collected in Xi'an city, Shaanxi Province. Of these fungal isolates, only one (isolate AP-3) was pathogenic to the healthy host plant. The pathogenic isolate was identified as <i>Fusarium acuminatum</i> by morphological characteristics and <i>ITS</i> and <i>TEF-1α</i> sequence analyses. The optimal growth conditions for this isolate were further analyzed as follows: Optimal temperature of 25 °C, pH of 11, soluble starch and sodium nitrate as the most preferred carbon and nitrogen sources, respectively. By combining Oxford Nanopore Technologies (ONT) long-read sequencing with Illumina short-read sequencing technologies, we obtained a 41.50 Mb genome assembly for AP-3, with 47.97% GC content and 3.04% repeats. This consisted of 14 contigs with an N50 of 4.64 Mb and a maximum length of 6.45 Mb. The BUSCO completeness of the genome assembly was 98.94% at the fungal level and 97.83% at the Ascomycota level. The genome assembly contained 13,408 protein-coding genes, including 421 carbohydrate-active enzymes (CAZys), 120 cytochrome P450 enzymes (CYPs), 3185 pathogen-host interaction (PHI) genes, and 694 candidate secreted proteins. To our knowledge, this is the first report of <i>F. acuminatum</i> causing needle blight of <i>P. tabuliformis</i>. This study not only uncovered the pathogen responsible for needle blight of <i>P. tabuliformis</i>, but also provided a systematic analysis of its biological characteristics. These findings provide an important theoretical basis for disease control in <i>P. tabuliformis</i> and pave the way for further research into the fungal pathogenicity mechanisms and management strategies.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11090636","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from diseased Pinus tabuliformis samples collected in Xi'an city, Shaanxi Province. Of these fungal isolates, only one (isolate AP-3) was pathogenic to the healthy host plant. The pathogenic isolate was identified as Fusarium acuminatum by morphological characteristics and ITS and TEF-1α sequence analyses. The optimal growth conditions for this isolate were further analyzed as follows: Optimal temperature of 25 °C, pH of 11, soluble starch and sodium nitrate as the most preferred carbon and nitrogen sources, respectively. By combining Oxford Nanopore Technologies (ONT) long-read sequencing with Illumina short-read sequencing technologies, we obtained a 41.50 Mb genome assembly for AP-3, with 47.97% GC content and 3.04% repeats. This consisted of 14 contigs with an N50 of 4.64 Mb and a maximum length of 6.45 Mb. The BUSCO completeness of the genome assembly was 98.94% at the fungal level and 97.83% at the Ascomycota level. The genome assembly contained 13,408 protein-coding genes, including 421 carbohydrate-active enzymes (CAZys), 120 cytochrome P450 enzymes (CYPs), 3185 pathogen-host interaction (PHI) genes, and 694 candidate secreted proteins. To our knowledge, this is the first report of F. acuminatum causing needle blight of P. tabuliformis. This study not only uncovered the pathogen responsible for needle blight of P. tabuliformis, but also provided a systematic analysis of its biological characteristics. These findings provide an important theoretical basis for disease control in P. tabuliformis and pave the way for further research into the fungal pathogenicity mechanisms and management strategies.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.