Mingchen Yang, Yonghua Zhang, Xiaoli Tan, Lu Li, Qiuli OuYang, Nengguo Tao
{"title":"Sodium Cuminate Inhibits the Mycelial Growth of <i>Penicillium digitatum</i> by Inducing Oxidative Stress and Damaging the Cell Membrane.","authors":"Mingchen Yang, Yonghua Zhang, Xiaoli Tan, Lu Li, Qiuli OuYang, Nengguo Tao","doi":"10.3390/jof11090612","DOIUrl":null,"url":null,"abstract":"<p><p>Green mold formed by <i>Penicillium digitatum</i> is a major disease that limits the yield and overall value of postharvest citrus fruits. The antifungal activity of sodium cuminate (SC) against <i>P. digitatum</i> and the corresponding mechanism were explored in this research. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of SC against <i>P. digitatum</i> were 0.4 and 0.8 g L<sup>-1</sup>, respectively. SC (8× MFC) reduced the incidence of disease in Ponkan fruits without compromising their quality. The results of CFW staining and extracellular alkaline phosphatase assays revealed that 1/2MIC SC for 30 min had no impact on the cell wall integrity of <i>P. digitatum</i>. In contrast, 1/2MIC SC apparently destroyed cell membrane integrity, as shown by the increase in the content of reactive oxygen species (ROS), malondialdehyde, and H<sub>2</sub>O<sub>2</sub>. The addition of exogenous cysteine (Cys) or diphenyleneiodonium chloride (DPI) significantly mitigated the cytotoxic effects of SC. At the same time, mitochondrial membrane potential was significantly decreased by 1/2MIC SC, and the addition of exogenous Cys or DPI restored it to normal levels. In summary, the antifungal capacity of SC might be attributable to membrane damage in <i>P. digitatum</i> caused by oxidative stress.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11090612","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Green mold formed by Penicillium digitatum is a major disease that limits the yield and overall value of postharvest citrus fruits. The antifungal activity of sodium cuminate (SC) against P. digitatum and the corresponding mechanism were explored in this research. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of SC against P. digitatum were 0.4 and 0.8 g L-1, respectively. SC (8× MFC) reduced the incidence of disease in Ponkan fruits without compromising their quality. The results of CFW staining and extracellular alkaline phosphatase assays revealed that 1/2MIC SC for 30 min had no impact on the cell wall integrity of P. digitatum. In contrast, 1/2MIC SC apparently destroyed cell membrane integrity, as shown by the increase in the content of reactive oxygen species (ROS), malondialdehyde, and H2O2. The addition of exogenous cysteine (Cys) or diphenyleneiodonium chloride (DPI) significantly mitigated the cytotoxic effects of SC. At the same time, mitochondrial membrane potential was significantly decreased by 1/2MIC SC, and the addition of exogenous Cys or DPI restored it to normal levels. In summary, the antifungal capacity of SC might be attributable to membrane damage in P. digitatum caused by oxidative stress.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.