Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs.
Riccardo Fenici, Marco Picerni, Peter Fenici, Donatella Brisinda
{"title":"Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs.","authors":"Riccardo Fenici, Marco Picerni, Peter Fenici, Donatella Brisinda","doi":"10.3390/jcdd12090343","DOIUrl":null,"url":null,"abstract":"<p><p>Optical mapping, nanotechnology-based multielectrode arrays and automated patch-clamp allow transmembrane voltage mapping with high spatial resolution, as well as L-type calcium and inward rectifier currents measurements using native mammalian cardiomyocytes. However, these methods are limited to in vitro and ex vivo experiments, while magnetocardiography (MCG) might offer a novel approach for non-invasive preclinical safety assessments of new drugs in intact and even conscious rodents by reconstructing the ventricular action potential waveform (rVAPw) from MCG signals. <b>Objective:</b> This study aims to assess the feasibility of rVAPw reconstruction from MCG signals in Guinea pigs (GPs) and validate the results by comparison with simultaneously recorded epicardial ventricular monophasic action potentials (eVMAP). <b>Methods:</b> Unshielded MCG (uMCG) data of 18 GPs, investigated anaesthetized and awake at ages of 5, 14, and 26 months using a 36-channel DC-SQUID system, were analyzed to calculate rVAPw from MCG's current arrow map. <b>Results:</b> Successful rVAPw reconstruction from averaged MCG showed good alignment with eVMAP waveforms. However, some rVAPw displayed incomplete or distorted repolarization at sites with lower MCG amplitude. <b>Conclusions:</b> 300-s uMCG averaging allowed rVAPw reconstruction in intact GPs. Occasionally distorted rVAPw suggests the need for dedicated MCG devices development, with higher density of optimized vector sensors, and modelling tailored for small animal hearts.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12090343","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical mapping, nanotechnology-based multielectrode arrays and automated patch-clamp allow transmembrane voltage mapping with high spatial resolution, as well as L-type calcium and inward rectifier currents measurements using native mammalian cardiomyocytes. However, these methods are limited to in vitro and ex vivo experiments, while magnetocardiography (MCG) might offer a novel approach for non-invasive preclinical safety assessments of new drugs in intact and even conscious rodents by reconstructing the ventricular action potential waveform (rVAPw) from MCG signals. Objective: This study aims to assess the feasibility of rVAPw reconstruction from MCG signals in Guinea pigs (GPs) and validate the results by comparison with simultaneously recorded epicardial ventricular monophasic action potentials (eVMAP). Methods: Unshielded MCG (uMCG) data of 18 GPs, investigated anaesthetized and awake at ages of 5, 14, and 26 months using a 36-channel DC-SQUID system, were analyzed to calculate rVAPw from MCG's current arrow map. Results: Successful rVAPw reconstruction from averaged MCG showed good alignment with eVMAP waveforms. However, some rVAPw displayed incomplete or distorted repolarization at sites with lower MCG amplitude. Conclusions: 300-s uMCG averaging allowed rVAPw reconstruction in intact GPs. Occasionally distorted rVAPw suggests the need for dedicated MCG devices development, with higher density of optimized vector sensors, and modelling tailored for small animal hearts.