Impact of age-related changes in the mechanical properties of ankle plantarflexor muscles on gait biomechanics and energetics: A systematic review and meta-analysis

IF 2.4 3区 医学 Q3 BIOPHYSICS
Florian Etheve, Teddy Caderby, Jérémie Begue
{"title":"Impact of age-related changes in the mechanical properties of ankle plantarflexor muscles on gait biomechanics and energetics: A systematic review and meta-analysis","authors":"Florian Etheve,&nbsp;Teddy Caderby,&nbsp;Jérémie Begue","doi":"10.1016/j.jbiomech.2025.112973","DOIUrl":null,"url":null,"abstract":"<div><div>This systematic review and meta-analysis aimed to provide a comprehensive overview of the impact of age-related changes in the mechanical properties of ankle plantarflexor muscles on gait biomechanics and energetics. A systematic search was conducted across three databases (PubMed, Epistemonikos, and Scopus) to identify studies evaluating the mechanical properties of the ankle plantarflexor muscles in relation to gait parameters. Included studies were cross-sectional in design and compared at least two age groups, with one group aged <span><math><mrow><mo>≥</mo></mrow></math></span> 60 years. Eleven studies met the inclusion criteria. The meta-analysis revealed that aging is associated with a significant decline in ankle plantarflexor strength (Effect Size (ES) = 1.06 [0.55, 1.58]; <em>p</em> &lt; 0.001), stiffness of the plantarflexor muscles and Achilles tendon (AT) (ES = 0.76; 95 % CI = [0.24 1.27]; p = 0.004), and muscle volume/thickness (ES = 1.37 [0.63, 2.11]; <em>p</em> &lt; 0.001). The age-related decline in plantarflexor strength was associated with decreased walking speed and ankle power generation, as well as reduced stability and increased energy cost. Lower AT stiffness in older adults was linked to reduced gait economy, while decreased muscle stiffness was associated with shorter step length and lower maximal gait speed. Similarly, age-related reduction in muscle volume/thickness was associated with decreased step length and peak ankle joint torque. This systematic review and meta-analysis highlights that aging significantly alters the mechanical properties of the plantarflexor muscles, strongly impacting gait performance, stability and economy.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"192 ","pages":"Article 112973"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025004853","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic review and meta-analysis aimed to provide a comprehensive overview of the impact of age-related changes in the mechanical properties of ankle plantarflexor muscles on gait biomechanics and energetics. A systematic search was conducted across three databases (PubMed, Epistemonikos, and Scopus) to identify studies evaluating the mechanical properties of the ankle plantarflexor muscles in relation to gait parameters. Included studies were cross-sectional in design and compared at least two age groups, with one group aged 60 years. Eleven studies met the inclusion criteria. The meta-analysis revealed that aging is associated with a significant decline in ankle plantarflexor strength (Effect Size (ES) = 1.06 [0.55, 1.58]; p < 0.001), stiffness of the plantarflexor muscles and Achilles tendon (AT) (ES = 0.76; 95 % CI = [0.24 1.27]; p = 0.004), and muscle volume/thickness (ES = 1.37 [0.63, 2.11]; p < 0.001). The age-related decline in plantarflexor strength was associated with decreased walking speed and ankle power generation, as well as reduced stability and increased energy cost. Lower AT stiffness in older adults was linked to reduced gait economy, while decreased muscle stiffness was associated with shorter step length and lower maximal gait speed. Similarly, age-related reduction in muscle volume/thickness was associated with decreased step length and peak ankle joint torque. This systematic review and meta-analysis highlights that aging significantly alters the mechanical properties of the plantarflexor muscles, strongly impacting gait performance, stability and economy.
踝关节跖屈肌力学特性的年龄相关变化对步态生物力学和能量学的影响:系统回顾和荟萃分析。
本系统综述和荟萃分析旨在全面概述踝关节跖屈肌力学特性的年龄相关变化对步态生物力学和能量学的影响。系统检索了三个数据库(PubMed、Epistemonikos和Scopus),以确定评估踝关节跖屈肌力学特性与步态参数之间关系的研究。纳入的研究采用横断面设计,并比较了至少两个年龄组,其中一组年龄≥60岁。11项研究符合纳入标准。荟萃分析显示,衰老与踝关节跖屈肌强度显著下降有关(效应值(ES) = 1.06 [0.55, 1.58];p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信