{"title":"Polydatin Modulates Inflammatory Cytokine Expression in Lipoteichoic Acid-Stimulated Human Dental-Pulp Stem Cells.","authors":"Rawan Al-Ateeq, Mona Elsafadi, Manikandan Muthurangan, Solaiman Al-Hadlaq","doi":"10.3390/jfb16090331","DOIUrl":null,"url":null,"abstract":"<p><p>Gram-positive bacteria are responsible for initiating dental caries. In this process, lipoteichoic acid (LTA), which is expressed on Gram-positive bacteria cell walls, binds to the dental pulp cells, triggering an immune response, followed by inflammation and eventually pulp necrosis. Polydatin is a polyphenolic compound that has been shown to modulate inflammatory mediators in a manner favorable to healing. The purpose of this study was to assess levels of expression of the most prevalent cytokines in the inflamed pulp after polydatin treatment of LTA-stimulated human dental-pulp stem cells (hDPSCs). LTA-stimulated hDPSCs were treated with polydatin in three different concentrations (0.01 µM, 0.1 µM, and 1 µM). Interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) levels were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were quantified. Treatment with all concentrations of polydatin significantly decreased IL-6 and TNF-α levels as evaluated by ELISA and RT-qPCR, respectively. In addition, a significant reduction was observed in IL-8 levels of mRNA and in ELISA, with 0.01 µM and with 1 µM of polydatin in RT-qPCR. On the other hand, IL-10 levels increased with all of the concentrations. In conclusion, polydatin treatment of LTA-stimulated hDPSCs modulated inflammatory cytokine production by suppressing IL-6, IL-8, and TNF-α levels while elevating IL-10 levels.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gram-positive bacteria are responsible for initiating dental caries. In this process, lipoteichoic acid (LTA), which is expressed on Gram-positive bacteria cell walls, binds to the dental pulp cells, triggering an immune response, followed by inflammation and eventually pulp necrosis. Polydatin is a polyphenolic compound that has been shown to modulate inflammatory mediators in a manner favorable to healing. The purpose of this study was to assess levels of expression of the most prevalent cytokines in the inflamed pulp after polydatin treatment of LTA-stimulated human dental-pulp stem cells (hDPSCs). LTA-stimulated hDPSCs were treated with polydatin in three different concentrations (0.01 µM, 0.1 µM, and 1 µM). Interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) levels were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were quantified. Treatment with all concentrations of polydatin significantly decreased IL-6 and TNF-α levels as evaluated by ELISA and RT-qPCR, respectively. In addition, a significant reduction was observed in IL-8 levels of mRNA and in ELISA, with 0.01 µM and with 1 µM of polydatin in RT-qPCR. On the other hand, IL-10 levels increased with all of the concentrations. In conclusion, polydatin treatment of LTA-stimulated hDPSCs modulated inflammatory cytokine production by suppressing IL-6, IL-8, and TNF-α levels while elevating IL-10 levels.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.