Magdalena Sycińska-Dziarnowska, Liliana Szyszka-Sommerfeld, Monika Bugajska, Magdalena Ziąbka, Izabela Szućko-Kociuba, Gianrico Spagnuolo, Krzysztof Woźniak, Hyo-Sang Park
{"title":"Propolis as a Natural Remedy in Reducing Dental Plaque and Gingival Inflammation: A Systematic Review and Meta-Analysis.","authors":"Magdalena Sycińska-Dziarnowska, Liliana Szyszka-Sommerfeld, Monika Bugajska, Magdalena Ziąbka, Izabela Szućko-Kociuba, Gianrico Spagnuolo, Krzysztof Woźniak, Hyo-Sang Park","doi":"10.3390/jfb16090336","DOIUrl":null,"url":null,"abstract":"<p><p>Dental plaque, if not regularly removed through proper oral hygiene, can lead to tooth decay, gingivitis, and more severe periodontal disease. Effective plaque removal is essential in preventing gingivitis, the precursor to periodontitis. Propolis, a bee product known for its antibacterial, anti-inflammatory, and antioxidant properties, has shown potential in dental applications. This systematic review and meta-analysis was conducted to evaluate the efficacy of propolis-containing mouthwashes and toothpastes in reducing dental plaque and gingival inflammation.</p><p><strong>Materials and methods: </strong>The study protocol was registered in PROSPERO (CRD42023467573), and the review was conducted in accordance with PRISMA guidelines. A comprehensive search of PubMed, PubMed Central, Embase, Scopus, and Web of Science was performed up to 10 May 2025 to identify randomized controlled trials and observational studies assessing propolis-based mouthwashes or toothpastes. Data synthesis used random-effects meta-analysis due to anticipated heterogeneity among studies.</p><p><strong>Results: </strong>Seven randomized controlled trials were included in the meta-analysis, evaluating the efficacy of propolis alcohol-free mouthwash on plaque index (PI) and gingival index (GI). For PI, the pooled standardized mean difference (SMD) was 1.74 (95% CI: 0.19-3.29; <i>p</i> = 0.036), with low between-study heterogeneity (I<sup>2</sup> = 13.7%). For GI, the pooled SMD was 2.19 (95% CI: 1.10-3.29; <i>p</i> = 0.005), with no observed heterogeneity (I<sup>2</sup> = 0.0%). Propolis mouthwashes demonstrated large effect sizes, significantly reducing plaque accumulation and gingival inflammation compared to baseline.</p><p><strong>Conclusions: </strong>The evidence supports the potential of propolis-containing mouthwashes and toothpastes in managing dental plaque and gingival health. Propolis-based oral care products could be a valuable addition to preventive strategies in dental hygiene, offering an alternative for reducing dental plaque and gingival inflammation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090336","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dental plaque, if not regularly removed through proper oral hygiene, can lead to tooth decay, gingivitis, and more severe periodontal disease. Effective plaque removal is essential in preventing gingivitis, the precursor to periodontitis. Propolis, a bee product known for its antibacterial, anti-inflammatory, and antioxidant properties, has shown potential in dental applications. This systematic review and meta-analysis was conducted to evaluate the efficacy of propolis-containing mouthwashes and toothpastes in reducing dental plaque and gingival inflammation.
Materials and methods: The study protocol was registered in PROSPERO (CRD42023467573), and the review was conducted in accordance with PRISMA guidelines. A comprehensive search of PubMed, PubMed Central, Embase, Scopus, and Web of Science was performed up to 10 May 2025 to identify randomized controlled trials and observational studies assessing propolis-based mouthwashes or toothpastes. Data synthesis used random-effects meta-analysis due to anticipated heterogeneity among studies.
Results: Seven randomized controlled trials were included in the meta-analysis, evaluating the efficacy of propolis alcohol-free mouthwash on plaque index (PI) and gingival index (GI). For PI, the pooled standardized mean difference (SMD) was 1.74 (95% CI: 0.19-3.29; p = 0.036), with low between-study heterogeneity (I2 = 13.7%). For GI, the pooled SMD was 2.19 (95% CI: 1.10-3.29; p = 0.005), with no observed heterogeneity (I2 = 0.0%). Propolis mouthwashes demonstrated large effect sizes, significantly reducing plaque accumulation and gingival inflammation compared to baseline.
Conclusions: The evidence supports the potential of propolis-containing mouthwashes and toothpastes in managing dental plaque and gingival health. Propolis-based oral care products could be a valuable addition to preventive strategies in dental hygiene, offering an alternative for reducing dental plaque and gingival inflammation.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.