Sabuj Chandra Sutradhar, Nipa Banik, Mohammad Mizanur Rahman Khan, Jae-Ho Jeong
{"title":"Polymer Gel-Based Triboelectric Nanogenerators: Conductivity and Morphology Engineering for Advanced Sensing Applications.","authors":"Sabuj Chandra Sutradhar, Nipa Banik, Mohammad Mizanur Rahman Khan, Jae-Ho Jeong","doi":"10.3390/gels11090737","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer gel-based triboelectric nanogenerators (TENGs) have emerged as versatile platforms for self-powered sensing due to their inherent softness, stretchability, and tunable conductivity. This review comprehensively explores the roles of polymer gels in TENG architecture, including their function as triboelectric layers, electrodes, and conductive matrices. We analyze four operational modes-vertical contact-separation, lateral-sliding, single-electrode, and freestanding configurations-alongside key performance metrics. Recent studies have reported output voltages of up to 545 V, short-circuit currents of 48.7 μA, and power densities exceeding 120 mW/m<sup>2</sup>, demonstrating the high efficiency of gel-based TENGs. Gel materials are classified by network structure (single-, double-, and multi-network), matrix composition (hydrogels, aerogels, and ionic gels), and dielectric medium. Strategies to enhance conductivity using ionic salts, conductive polymers, and nanomaterials are discussed in relation to triboelectric output and sensing sensitivity. Morphological features such as surface roughness, porosity, and micro/nano-patterning are examined for their impact on charge generation. Application-focused sections detail the integration of gel-based TENGs in health monitoring (e.g., sweat, glucose, respiratory, and tremor sensing), environmental sensing (e.g., humidity, fire, marine, and gas detection), and tactile interfaces (e.g., e-skin and wearable electronics). Finally, we address current challenges, including mechanical durability, dehydration, and system integration, and outline future directions involving self-healing gels, hybrid architectures, and AI-assisted sensing. This review expands the subject area by synthesizing recent advances and offering a strategic roadmap for developing intelligent, sustainable, and multifunctional TENG-based sensing technologies.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090737","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer gel-based triboelectric nanogenerators (TENGs) have emerged as versatile platforms for self-powered sensing due to their inherent softness, stretchability, and tunable conductivity. This review comprehensively explores the roles of polymer gels in TENG architecture, including their function as triboelectric layers, electrodes, and conductive matrices. We analyze four operational modes-vertical contact-separation, lateral-sliding, single-electrode, and freestanding configurations-alongside key performance metrics. Recent studies have reported output voltages of up to 545 V, short-circuit currents of 48.7 μA, and power densities exceeding 120 mW/m2, demonstrating the high efficiency of gel-based TENGs. Gel materials are classified by network structure (single-, double-, and multi-network), matrix composition (hydrogels, aerogels, and ionic gels), and dielectric medium. Strategies to enhance conductivity using ionic salts, conductive polymers, and nanomaterials are discussed in relation to triboelectric output and sensing sensitivity. Morphological features such as surface roughness, porosity, and micro/nano-patterning are examined for their impact on charge generation. Application-focused sections detail the integration of gel-based TENGs in health monitoring (e.g., sweat, glucose, respiratory, and tremor sensing), environmental sensing (e.g., humidity, fire, marine, and gas detection), and tactile interfaces (e.g., e-skin and wearable electronics). Finally, we address current challenges, including mechanical durability, dehydration, and system integration, and outline future directions involving self-healing gels, hybrid architectures, and AI-assisted sensing. This review expands the subject area by synthesizing recent advances and offering a strategic roadmap for developing intelligent, sustainable, and multifunctional TENG-based sensing technologies.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.