Maria Marinela Lazar, Claudiu-Augustin Ghiorghita, Daniela Rusu, Maria Valentina Dinu
{"title":"Nanocomposite Cryogels Based on Chitosan for Efficient Removal of a Triphenylmethane Dye from Aqueous Systems.","authors":"Maria Marinela Lazar, Claudiu-Augustin Ghiorghita, Daniela Rusu, Maria Valentina Dinu","doi":"10.3390/gels11090729","DOIUrl":null,"url":null,"abstract":"<p><p>This work addresses the environmental challenge represented by persistent triphenylmethane dyes in aquatic systems through the development of chitosan (CS)-zeolite nanocomposite cryogels for the adsorption of chrome azurol S (CAS), as model dye. Nanocomposite cryogels were prepared via cryogelation at -20 °C with systematic variation in cross-linker concentration and zeolite content to modulate the network architecture and sorption performance. Comprehensive physicochemical characterization (SEM, EDX, FTIR) demonstrated that an intermediate cross-linker content (7.5 wt.% GA) combined with moderate zeolite loading (20 wt.%) yielded cryogels with the highest gel fraction yield and a homogeneous, highly interconnected macroporous structure. Swelling experiments at pH 1.2 revealed rapid water uptake equilibrium within 10 min, whereas adsorption isotherm analysis indicated that CAS sorption followed the Freundlich model, consistent with multilayer physical adsorption. The highest CAS adsorption capacity was achieved by CSGA5Z40 (250.81 mg g<sup>-1</sup>), indicating that low cross-linking combined with high zeolite loading maximizes uptake. These findings demonstrate that chitosan-zeolite nanocomposite cryogels are promising, reusable, and tunable adsorbents for sustainable removal of persistent dyes from wastewater.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090729","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses the environmental challenge represented by persistent triphenylmethane dyes in aquatic systems through the development of chitosan (CS)-zeolite nanocomposite cryogels for the adsorption of chrome azurol S (CAS), as model dye. Nanocomposite cryogels were prepared via cryogelation at -20 °C with systematic variation in cross-linker concentration and zeolite content to modulate the network architecture and sorption performance. Comprehensive physicochemical characterization (SEM, EDX, FTIR) demonstrated that an intermediate cross-linker content (7.5 wt.% GA) combined with moderate zeolite loading (20 wt.%) yielded cryogels with the highest gel fraction yield and a homogeneous, highly interconnected macroporous structure. Swelling experiments at pH 1.2 revealed rapid water uptake equilibrium within 10 min, whereas adsorption isotherm analysis indicated that CAS sorption followed the Freundlich model, consistent with multilayer physical adsorption. The highest CAS adsorption capacity was achieved by CSGA5Z40 (250.81 mg g-1), indicating that low cross-linking combined with high zeolite loading maximizes uptake. These findings demonstrate that chitosan-zeolite nanocomposite cryogels are promising, reusable, and tunable adsorbents for sustainable removal of persistent dyes from wastewater.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.