{"title":"Janus Hydrogels: Design, Properties, and Applications.","authors":"Wei Guo, Mahta Mirzaei, Lei Nie","doi":"10.3390/gels11090717","DOIUrl":null,"url":null,"abstract":"<p><p>Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and unique \"adhesion-antiadhesion\" duality have demonstrated exceptional potential in biomedical applications ranging from advanced wound healing and internal tissue adhesion prevention to cardiac tissue regeneration. Furthermore, \"hydrophilic-hydrophobic\" Janus configurations, synergistically integrated with tunable conductivity and stimuli-responsiveness, showcase the great potential in emerging domains, including wearable biosensing, high-efficiency desalination, and humidity regulation systems. This review systematically examines contemporary synthesis strategies for Janus hydrogels using various technologies, including layer-by-layer, self-assembly, and one-pot methods. We elucidate the properties and applications of Janus hydrogels in biomedicine, environmental engineering, and soft robotics, and we emphasize recent developments in this field while projecting future trajectories and challenges.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090717","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and unique "adhesion-antiadhesion" duality have demonstrated exceptional potential in biomedical applications ranging from advanced wound healing and internal tissue adhesion prevention to cardiac tissue regeneration. Furthermore, "hydrophilic-hydrophobic" Janus configurations, synergistically integrated with tunable conductivity and stimuli-responsiveness, showcase the great potential in emerging domains, including wearable biosensing, high-efficiency desalination, and humidity regulation systems. This review systematically examines contemporary synthesis strategies for Janus hydrogels using various technologies, including layer-by-layer, self-assembly, and one-pot methods. We elucidate the properties and applications of Janus hydrogels in biomedicine, environmental engineering, and soft robotics, and we emphasize recent developments in this field while projecting future trajectories and challenges.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.