Cu9S5/Gel-Derived TiO2 Composites for Efficient CO2 Adsorption and Conversion.

IF 5.3 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-09-04 DOI:10.3390/gels11090711
Shuai Liu, Yang Meng, Zhengfei Chen, Jiefeng Yan, Fuyan Gao, Tao Wu, Guangsuo Yu
{"title":"Cu<sub>9</sub>S<sub>5</sub>/Gel-Derived TiO<sub>2</sub> Composites for Efficient CO<sub>2</sub> Adsorption and Conversion.","authors":"Shuai Liu, Yang Meng, Zhengfei Chen, Jiefeng Yan, Fuyan Gao, Tao Wu, Guangsuo Yu","doi":"10.3390/gels11090711","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering phase-selective gel composites presents a promising route to enhance both CO<sub>2</sub> adsorption and conversion efficiency in photocatalytic systems. In this work, Cu<sub>9</sub>S<sub>5</sub>/TiO<sub>2</sub> gel composites were synthesized via a hydrazine-hydrate-assisted hydrothermal method, using TiO<sub>2</sub> derived from a microwave-assisted sol-gel process. The resulting materials exhibit a porous gel-derived morphology with highly dispersed Cu<sub>9</sub>S<sub>5</sub> nanocrystals, as confirmed by XRD, TEM, and XPS analyses. These structural features promote abundant surface-active sites and interfacial contact, enabling efficient CO<sub>2</sub> adsorption. Among all samples, the optimized 0.36Cu<sub>9</sub>S<sub>5</sub>/TiO<sub>2</sub> composite achieved a methane production rate of 34 μmol·g<sup>-1</sup>·h<sup>-1</sup>, with 64.76% CH<sub>4</sub> selectivity and 88.02% electron-based selectivity, significantly outperforming Cu<sub>9</sub>S<sub>8</sub>/TiO<sub>2</sub> synthesized without hydrazine hydrate. This enhancement is attributed to the dual role of hydrazine: facilitating phase transformation from Cu<sub>9</sub>S<sub>8</sub> to Cu<sub>9</sub>S<sub>5</sub> and modulating the interfacial electronic environment to favor CO<sub>2</sub> capture and activation. DFT calculations reveal that Cu<sub>9</sub>S<sub>5</sub>/TiO<sub>2</sub> effectively lowers the energy barriers of critical intermediates (*COOH, *CO, and *CHO), enhancing both CO<sub>2</sub> adsorption strength and subsequent conversion to methane. This work demonstrates a gel-derived composite strategy that couples efficient CO<sub>2</sub> adsorption with selective photocatalytic reduction, offering new design principles for adsorption-conversion hybrid materials.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090711","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering phase-selective gel composites presents a promising route to enhance both CO2 adsorption and conversion efficiency in photocatalytic systems. In this work, Cu9S5/TiO2 gel composites were synthesized via a hydrazine-hydrate-assisted hydrothermal method, using TiO2 derived from a microwave-assisted sol-gel process. The resulting materials exhibit a porous gel-derived morphology with highly dispersed Cu9S5 nanocrystals, as confirmed by XRD, TEM, and XPS analyses. These structural features promote abundant surface-active sites and interfacial contact, enabling efficient CO2 adsorption. Among all samples, the optimized 0.36Cu9S5/TiO2 composite achieved a methane production rate of 34 μmol·g-1·h-1, with 64.76% CH4 selectivity and 88.02% electron-based selectivity, significantly outperforming Cu9S8/TiO2 synthesized without hydrazine hydrate. This enhancement is attributed to the dual role of hydrazine: facilitating phase transformation from Cu9S8 to Cu9S5 and modulating the interfacial electronic environment to favor CO2 capture and activation. DFT calculations reveal that Cu9S5/TiO2 effectively lowers the energy barriers of critical intermediates (*COOH, *CO, and *CHO), enhancing both CO2 adsorption strength and subsequent conversion to methane. This work demonstrates a gel-derived composite strategy that couples efficient CO2 adsorption with selective photocatalytic reduction, offering new design principles for adsorption-conversion hybrid materials.

Abstract Image

Abstract Image

Abstract Image

Cu9S5/凝胶型TiO2复合材料对CO2的高效吸附和转化
工程相选择凝胶复合材料是提高光催化系统中CO2吸附和转化效率的有效途径。本文以微波溶胶-凝胶法制备的TiO2为原料,采用水合肼辅助水热法制备了Cu9S5/TiO2凝胶复合材料。通过XRD, TEM和XPS分析证实,所得材料具有多孔凝胶衍生的形态,具有高度分散的Cu9S5纳米晶体。这些结构特征促进了丰富的表面活性位点和界面接触,从而实现了高效的CO2吸附。在所有样品中,优化后的0.36Cu9S5/TiO2复合材料的甲烷产率为34 μmol·g-1·h-1, CH4选择性为64.76%,电子选择性为88.02%,显著优于未水合肼合成的Cu9S8/TiO2。这种增强归因于肼的双重作用:促进Cu9S8向Cu9S5的相变,调节界面电子环境,有利于CO2的捕获和活化。DFT计算表明,Cu9S5/TiO2有效降低了关键中间体(*COOH、*CO和*CHO)的能垒,增强了CO2吸附强度和随后转化为甲烷的能力。这项工作展示了一种凝胶衍生的复合材料策略,将有效的CO2吸附与选择性光催化还原结合在一起,为吸附-转化混合材料提供了新的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信