Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K H Leung, Yizhen Zhang, Keda Chen
{"title":"Carbon Nitride Gels: Synthesis, Modification, and Water Decontamination Applications.","authors":"Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K H Leung, Yizhen Zhang, Keda Chen","doi":"10.3390/gels11090685","DOIUrl":null,"url":null,"abstract":"<p><p>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C<sub>3</sub>N<sub>4</sub> faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C<sub>3</sub>N<sub>4</sub> into hydrogels or aerogels-three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity-represents a transformative solution. This review comprehensively examines recent advances in g-C<sub>3</sub>N<sub>4</sub>-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol-gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C<sub>3</sub>N<sub>4</sub>-based hydrogel and aerogel technologies in environmental applications.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090685","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C3N4 into hydrogels or aerogels-three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity-represents a transformative solution. This review comprehensively examines recent advances in g-C3N4-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol-gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C3N4-based hydrogel and aerogel technologies in environmental applications.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.