Giordano Perini, Margherita Montescagli, Giada Di Giulio, Alberto Augello, Valeria Ferrara, Antonio Minopoli, Davide Evangelista, Matteo Marras, Giulia Artemi, Anna Amelia Caretto, Stefano Gentileschi, Dania Nachira, Valerio Pontecorvi, Cristiano Spada, Loredana Gualtieri, Valentina Palmieri, Ivo Boskoski, Marco De Spirito, Massimiliano Papi
{"title":"3D-Bioprinting of Stromal Vascular Fraction for Gastrointestinal Regeneration.","authors":"Giordano Perini, Margherita Montescagli, Giada Di Giulio, Alberto Augello, Valeria Ferrara, Antonio Minopoli, Davide Evangelista, Matteo Marras, Giulia Artemi, Anna Amelia Caretto, Stefano Gentileschi, Dania Nachira, Valerio Pontecorvi, Cristiano Spada, Loredana Gualtieri, Valentina Palmieri, Ivo Boskoski, Marco De Spirito, Massimiliano Papi","doi":"10.3390/gels11090712","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal disorders such as inflammatory bowel diseases (IBDs), Crohn's disease, malabsorption syndromes, and gastrointestinal fistulae (GIFs) are often characterized by chronic inflammation, epithelial barrier disruption, impaired stromal remodeling, and defective angiogenesis. These multifactorial alterations hinder tissue repair and contribute to poor clinical outcomes, with limited efficacy from current therapeutic options. Despite recent advances in surgical and endoscopic techniques, current treatment options remain limited and are frequently accompanied by high morbidity and costs. In this context, regenerative medicine offers a promising avenue to support tissue repair and improve patient care Regenerative medicine offers a promising avenue to restore intestinal homeostasis using advanced biomaterials and cell-based therapies. In this study, we developed a 3D-bioprinted model based on patient-derived stromal vascular fraction (SVF) embedded in a GelMA hydrogel, designed to promote intestinal tissue regeneration. To identify the most suitable hydrogel for bioprinting, we initially evaluated the mechanical properties and biocompatibility of four distinct matrices using bone marrow-derived mesenchymal stromal cells (BM-MSCs). Among the tested formulations, GelMA demonstrated optimal support for cell viability, low oxidative stress, and structural stability in physiologically relevant conditions. Based on these results, GelMA was selected for subsequent bioprinting of freshly isolated SVF. The resulting bioprinted constructs enhanced key regenerative processes across multiple compartments. The SVF-laden constructs significantly enhanced intestinal epithelial cell viability and tight junction formation, as shown by increased trans-epithelial electrical resistance (TEER). Co-culture with fibroblasts accelerated wound closure, while endothelial cells exhibited increased tube formation in the presence of SVF. Together with VEGF secretion, indicating strong paracrine and angiogenic effects. By supporting epithelial, stromal, and vascular regeneration, this approach provides a versatile and translational platform for treating a broad spectrum of intestinal pathologies.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090712","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal disorders such as inflammatory bowel diseases (IBDs), Crohn's disease, malabsorption syndromes, and gastrointestinal fistulae (GIFs) are often characterized by chronic inflammation, epithelial barrier disruption, impaired stromal remodeling, and defective angiogenesis. These multifactorial alterations hinder tissue repair and contribute to poor clinical outcomes, with limited efficacy from current therapeutic options. Despite recent advances in surgical and endoscopic techniques, current treatment options remain limited and are frequently accompanied by high morbidity and costs. In this context, regenerative medicine offers a promising avenue to support tissue repair and improve patient care Regenerative medicine offers a promising avenue to restore intestinal homeostasis using advanced biomaterials and cell-based therapies. In this study, we developed a 3D-bioprinted model based on patient-derived stromal vascular fraction (SVF) embedded in a GelMA hydrogel, designed to promote intestinal tissue regeneration. To identify the most suitable hydrogel for bioprinting, we initially evaluated the mechanical properties and biocompatibility of four distinct matrices using bone marrow-derived mesenchymal stromal cells (BM-MSCs). Among the tested formulations, GelMA demonstrated optimal support for cell viability, low oxidative stress, and structural stability in physiologically relevant conditions. Based on these results, GelMA was selected for subsequent bioprinting of freshly isolated SVF. The resulting bioprinted constructs enhanced key regenerative processes across multiple compartments. The SVF-laden constructs significantly enhanced intestinal epithelial cell viability and tight junction formation, as shown by increased trans-epithelial electrical resistance (TEER). Co-culture with fibroblasts accelerated wound closure, while endothelial cells exhibited increased tube formation in the presence of SVF. Together with VEGF secretion, indicating strong paracrine and angiogenic effects. By supporting epithelial, stromal, and vascular regeneration, this approach provides a versatile and translational platform for treating a broad spectrum of intestinal pathologies.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.