Qing Yan, Kuo Li, Lu Chen, Aowei Wang, Yingying Xi, Hui Xiao, Lei Yuan
{"title":"Metabolic reprogramming in efferocytosis.","authors":"Qing Yan, Kuo Li, Lu Chen, Aowei Wang, Yingying Xi, Hui Xiao, Lei Yuan","doi":"10.3389/fcell.2025.1677028","DOIUrl":null,"url":null,"abstract":"<p><p>Efferocytosis refers to the process by which phagocytes specifically identify and eliminate apoptotic cells. This process is essential for both maintaining tissue homeostasis and suppressing inflammatory responses, as well as facilitating tissue repair. When phagocytes internalize apoptotic cells, which act as \"nutrient packages,\" they undergo significant metabolic reprogramming. This reprogramming not only supplies energy and biosynthetic precursors necessary for engulfment but also critically influences the functional phenotype of phagocytes through complex molecular networks. These networks ultimately determine whether phagocytes adopt an anti-inflammatory resolution or a pathological pro-inflammatory state. This article offers a comprehensive analysis of the molecular regulatory mechanisms that underpin metabolic reprogramming during efferocytosis, aiming to elucidate the intricate regulatory networks formed by the interaction of metabolites as signaling molecules and classical signaling pathways. We examine how the three primary metabolic pathways-glucose, lipid, and amino acid metabolisms-are regulated by signals from efferocytosis and, in turn, modulate phagocyte function. A deeper understanding of the interplay between metabolic reprogramming and efferocytosis will provide a theoretical foundation and novel targets for treating diseases associated with impaired clearance of apoptotic cells.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1677028"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1677028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efferocytosis refers to the process by which phagocytes specifically identify and eliminate apoptotic cells. This process is essential for both maintaining tissue homeostasis and suppressing inflammatory responses, as well as facilitating tissue repair. When phagocytes internalize apoptotic cells, which act as "nutrient packages," they undergo significant metabolic reprogramming. This reprogramming not only supplies energy and biosynthetic precursors necessary for engulfment but also critically influences the functional phenotype of phagocytes through complex molecular networks. These networks ultimately determine whether phagocytes adopt an anti-inflammatory resolution or a pathological pro-inflammatory state. This article offers a comprehensive analysis of the molecular regulatory mechanisms that underpin metabolic reprogramming during efferocytosis, aiming to elucidate the intricate regulatory networks formed by the interaction of metabolites as signaling molecules and classical signaling pathways. We examine how the three primary metabolic pathways-glucose, lipid, and amino acid metabolisms-are regulated by signals from efferocytosis and, in turn, modulate phagocyte function. A deeper understanding of the interplay between metabolic reprogramming and efferocytosis will provide a theoretical foundation and novel targets for treating diseases associated with impaired clearance of apoptotic cells.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.