{"title":"Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering.","authors":"Juan Cao, Bo Wu, Ping Yuan, Yeqi Liu, Cheng Hu","doi":"10.3390/gels11090758","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium alginate, a widely available and high-performance natural polymer, exhibits significant potential for applications in the biomedical field due to its excellent biocompatibility and versatile functionalization capabilities. This review systematically elucidates the fundamental properties and preparation methods of sodium alginate-based hydrogels, analyzing recent advancements in optimizing their mechanical properties, functionalization, and biological characteristics through strategies such as composite material construction, nano-reinforcement, and dynamic crosslinking. Furthermore, it summarizes the multifunctional applications of sodium alginate-based hydrogels in drug delivery, tissue engineering, and biosensing while addressing challenges in practical applications, including insufficient mechanical strength, regulating degradation rates, and maintaining stability in complex biological environments. To overcome these challenges, future research directions are proposed, including performance optimization, intelligent design, novel preparation techniques, and interdisciplinary collaboration, to facilitate the comprehensive transition of sodium alginate hydrogels from laboratory research to clinical applications. This review aims to provide a theoretical foundation and technical support for the fundamental research and biomedical applications of sodium alginate hydrogels while highlighting their promising prospects in addressing complex medical challenges.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090758","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium alginate, a widely available and high-performance natural polymer, exhibits significant potential for applications in the biomedical field due to its excellent biocompatibility and versatile functionalization capabilities. This review systematically elucidates the fundamental properties and preparation methods of sodium alginate-based hydrogels, analyzing recent advancements in optimizing their mechanical properties, functionalization, and biological characteristics through strategies such as composite material construction, nano-reinforcement, and dynamic crosslinking. Furthermore, it summarizes the multifunctional applications of sodium alginate-based hydrogels in drug delivery, tissue engineering, and biosensing while addressing challenges in practical applications, including insufficient mechanical strength, regulating degradation rates, and maintaining stability in complex biological environments. To overcome these challenges, future research directions are proposed, including performance optimization, intelligent design, novel preparation techniques, and interdisciplinary collaboration, to facilitate the comprehensive transition of sodium alginate hydrogels from laboratory research to clinical applications. This review aims to provide a theoretical foundation and technical support for the fundamental research and biomedical applications of sodium alginate hydrogels while highlighting their promising prospects in addressing complex medical challenges.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.