The diverse world within: Age-dependent photobiont diversity in the lichen Protoparmeliopsis muralis.

IF 3.2 3区 生物学 Q2 MICROBIOLOGY
Veronika Kantnerová, Pavel Škaloud
{"title":"The diverse world within: Age-dependent photobiont diversity in the lichen Protoparmeliopsis muralis.","authors":"Veronika Kantnerová, Pavel Škaloud","doi":"10.1093/femsec/fiaf096","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the initial formation and development of lichens is crucial for elucidating the mechanisms behind the formation of complex lichen thalli and their maintenance in long-term symbioses. These symbiotic relationships provide significant ecological advantages for both partners, expanding their ecological niches and allowing them, in many cases, to overcome extreme environmental conditions. The correct development of thalli likely relies on the selection of suitable photobionts from the environment. In this study, we focused on the impact of lichen age on the overall diversity of photobiont partners and examined how mycobiont preference toward their symbionts changes at different developmental stages. Using the lichen Protoparmeliopsis muralis as a model organism, we observed a strong correlation between the diversity of photobionts and lichen age, confirmed by both molecular data and morphological observations. Our findings indicate greater photobiont diversity in older thalli, suggesting that lichens retain the majority of algae they collect throughout their lifespan, potentially as an adaptation to changing environmental conditions. Additionally, we found that some lichen samples contained only low levels of Trebouxia algae, indicating that P. muralis does not consistently rely on this typical partner and that local environmental conditions may significantly influence its symbiotic composition.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the initial formation and development of lichens is crucial for elucidating the mechanisms behind the formation of complex lichen thalli and their maintenance in long-term symbioses. These symbiotic relationships provide significant ecological advantages for both partners, expanding their ecological niches and allowing them, in many cases, to overcome extreme environmental conditions. The correct development of thalli likely relies on the selection of suitable photobionts from the environment. In this study, we focused on the impact of lichen age on the overall diversity of photobiont partners and examined how mycobiont preference toward their symbionts changes at different developmental stages. Using the lichen Protoparmeliopsis muralis as a model organism, we observed a strong correlation between the diversity of photobionts and lichen age, confirmed by both molecular data and morphological observations. Our findings indicate greater photobiont diversity in older thalli, suggesting that lichens retain the majority of algae they collect throughout their lifespan, potentially as an adaptation to changing environmental conditions. Additionally, we found that some lichen samples contained only low levels of Trebouxia algae, indicating that P. muralis does not consistently rely on this typical partner and that local environmental conditions may significantly influence its symbiotic composition.

内部的多样性世界:地衣原斑生物的年龄依赖性光生物多样性。
了解地衣的初始形成和发育对于阐明复杂地衣菌体形成及其长期共生维持的机制至关重要。这些共生关系为双方提供了显著的生态优势,扩大了他们的生态位,并在许多情况下允许他们克服极端的环境条件。菌体的正确发育可能依赖于从环境中选择合适的光生成物。在这项研究中,我们重点研究了地衣年龄对光生物伴侣整体多样性的影响,并研究了不同发育阶段分枝生物对其共生体的偏好是如何变化的。本文以地衣原生斑藓(Protoparmeliopsis muralis)为研究对象,观察到光生生物多样性与地衣年龄之间存在很强的相关性,这一结果得到了分子数据和形态观察的证实。我们的研究结果表明,较老的菌体具有更大的光生物多样性,这表明地衣在其整个生命周期中保留了它们收集的大部分藻类,可能是为了适应不断变化的环境条件。此外,我们发现一些地衣样品中只含有低水平的Trebouxia藻类,这表明P. muralis并不总是依赖于这种典型的伙伴,当地的环境条件可能会显著影响其共生组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信