Differential toxic phenotypes and liver injury induced by Atractylenolides (I, II, and III): Insights from zebrafish (Danio rerio) models and network toxicology
IF 4.3 3区 环境科学与生态学Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yue Li , Zihao Jiang , Zhuoshuo Zhou , Naitian Zhang , Ximing Cui , Xiaoyan Yu , Yanli Zhao , Zhong Wang , Jinlian Li , Dongmei Wu
{"title":"Differential toxic phenotypes and liver injury induced by Atractylenolides (I, II, and III): Insights from zebrafish (Danio rerio) models and network toxicology","authors":"Yue Li , Zihao Jiang , Zhuoshuo Zhou , Naitian Zhang , Ximing Cui , Xiaoyan Yu , Yanli Zhao , Zhong Wang , Jinlian Li , Dongmei Wu","doi":"10.1016/j.cbpc.2025.110365","DOIUrl":null,"url":null,"abstract":"<div><div>Atractylenolides (I, II, and III), active sesquiterpene lactones from <em>Atractylodes macrocephala</em> Koidz, exhibit diverse pharmacological activities but have been reported to impair drug-metabolizing enzymes and hepatocellular function. However, a comprehensive safety assessment of these compounds remains lacking. In this study, we investigated the developmental toxicity profile of Atractylenolides (I, II, and III) in zebrafish embryos, with a particular focus on hepatotoxicity and its underlying mechanisms. Exposure to Atractylenolides (I, II, and III) resulted in concentration-dependent mortality, with 96-h median lethal concentrations (LC₅₀) of 81.64 μM, 138.40 μM, and 151.90 μM, respectively. Atractylenolides (I, II) induced multiple developmental abnormalities, among which Atractylenolide-I uniquely led to neuronal developmental arrest and diminished locomotor activity. Importantly, Atractylenolides (I, II) exhibited marked hepatotoxicity, evidenced by liver shrinkage, reduced liver-specific fluorescence intensity, and elevated levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In contrast, exposure to Atractylenolide-III did not induce significant toxic effects. Network toxicology analysis revealed that cytochrome P450 (CYP450) metabolism and apoptosis were closely associated with Atractylenolides (I, II) induced hepatotoxicity. qRT-PCR analysis revealed that Atractylenolides (I, II) suppressed mRNA expression of key drug-metabolizing genes, including <em>cyp3c1</em> and <em>cyp3a65</em>. Simultaneously, Atractylenolides (I, II) downregulated genes associated with cell proliferation (<em>top2α</em>, <em>uhrf1</em>). Co-treatment with the hepatoprotective agent silybin partially reversed the liver injury and the alterations in drug metabolism gene expression induced by Atractylenolides (I, II). Collectively, our results provide important insights into the safety evaluation of Atractylenolides (I, II, and III).</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"299 ","pages":"Article 110365"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625002467","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atractylenolides (I, II, and III), active sesquiterpene lactones from Atractylodes macrocephala Koidz, exhibit diverse pharmacological activities but have been reported to impair drug-metabolizing enzymes and hepatocellular function. However, a comprehensive safety assessment of these compounds remains lacking. In this study, we investigated the developmental toxicity profile of Atractylenolides (I, II, and III) in zebrafish embryos, with a particular focus on hepatotoxicity and its underlying mechanisms. Exposure to Atractylenolides (I, II, and III) resulted in concentration-dependent mortality, with 96-h median lethal concentrations (LC₅₀) of 81.64 μM, 138.40 μM, and 151.90 μM, respectively. Atractylenolides (I, II) induced multiple developmental abnormalities, among which Atractylenolide-I uniquely led to neuronal developmental arrest and diminished locomotor activity. Importantly, Atractylenolides (I, II) exhibited marked hepatotoxicity, evidenced by liver shrinkage, reduced liver-specific fluorescence intensity, and elevated levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In contrast, exposure to Atractylenolide-III did not induce significant toxic effects. Network toxicology analysis revealed that cytochrome P450 (CYP450) metabolism and apoptosis were closely associated with Atractylenolides (I, II) induced hepatotoxicity. qRT-PCR analysis revealed that Atractylenolides (I, II) suppressed mRNA expression of key drug-metabolizing genes, including cyp3c1 and cyp3a65. Simultaneously, Atractylenolides (I, II) downregulated genes associated with cell proliferation (top2α, uhrf1). Co-treatment with the hepatoprotective agent silybin partially reversed the liver injury and the alterations in drug metabolism gene expression induced by Atractylenolides (I, II). Collectively, our results provide important insights into the safety evaluation of Atractylenolides (I, II, and III).
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.