Konstantina Tetorou, Artadokht Aghaeipour, Shunyi Ma, Talia Gileadi, Amel Saoudi, Pablo Perdomo Quinteiro, Jorge Aragón, Maaike van Putten, Pietro Spitali, Cecilia Montanez, Cyrille Vaillend, Jennifer E Morgan, Federica Montanaro, Francesco Muntoni
{"title":"Regional Expression of Dystrophin Gene Transcripts and Proteins in the Mouse Brain.","authors":"Konstantina Tetorou, Artadokht Aghaeipour, Shunyi Ma, Talia Gileadi, Amel Saoudi, Pablo Perdomo Quinteiro, Jorge Aragón, Maaike van Putten, Pietro Spitali, Cecilia Montanez, Cyrille Vaillend, Jennifer E Morgan, Federica Montanaro, Francesco Muntoni","doi":"10.3390/cells14181441","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by mutations in the <i>DMD</i> gene, leading to muscle degeneration and shortened life expectancy. Beyond motor symptoms, DMD patients frequently exhibit brain co-morbidities, linked to loss of brain-expressed dystrophin isoforms: most frequently Dp427 and Dp140, and occasionally Dp71 and Dp40. DMD mouse models, including <i>mdx<sup>5cv</sup></i> and <i>mdx52</i>, replicate key aspects of the human cognitive phenotype and recapitulate the main genotypic categories of brain phenotype. However, the spatio-temporal expression of brain dystrophin in mice remains poorly defined, limiting insights into how its deficiency disrupts brain development and function. We systematically mapped RNA and protein expression of brain dystrophin isoforms (Dp427 variants, Dp140, Dp71, and Dp40) across brain regions and developmental stages in wild-type mice. Dp427 isoforms were differentially expressed in the adult brain, with Dp427c enriched in the cortex, Dp427p1/p2 in the cerebellum, and Dp427m was also detected across specific brain regions. Dp140 was expressed at lower levels than Dp427; Dp71 was the most abundant isoform in adulthood. Dp140 and Dp71 displayed dynamic developmental changes, from E15 to P60, suggesting stage-specific roles. We also analysed <i>mdx<sup>5cv</sup></i> mice lacking Dp427 and <i>mdx52</i> mice lacking both Dp427 and Dp140. Both models had minimal Dp427 transcript levels, likely due to the nonsense-mediated decay, and neither expressed Dp427 protein. As expected, <i>mdx52</i> mice lacked Dp140, confirming their genotypic relevance to human DMD. Our study provides the first atlas of dystrophin expression in the wild-type mouse brain, aiding understanding of the anatomical basis of behavioural and cognitive comorbidities in DMD.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by mutations in the DMD gene, leading to muscle degeneration and shortened life expectancy. Beyond motor symptoms, DMD patients frequently exhibit brain co-morbidities, linked to loss of brain-expressed dystrophin isoforms: most frequently Dp427 and Dp140, and occasionally Dp71 and Dp40. DMD mouse models, including mdx5cv and mdx52, replicate key aspects of the human cognitive phenotype and recapitulate the main genotypic categories of brain phenotype. However, the spatio-temporal expression of brain dystrophin in mice remains poorly defined, limiting insights into how its deficiency disrupts brain development and function. We systematically mapped RNA and protein expression of brain dystrophin isoforms (Dp427 variants, Dp140, Dp71, and Dp40) across brain regions and developmental stages in wild-type mice. Dp427 isoforms were differentially expressed in the adult brain, with Dp427c enriched in the cortex, Dp427p1/p2 in the cerebellum, and Dp427m was also detected across specific brain regions. Dp140 was expressed at lower levels than Dp427; Dp71 was the most abundant isoform in adulthood. Dp140 and Dp71 displayed dynamic developmental changes, from E15 to P60, suggesting stage-specific roles. We also analysed mdx5cv mice lacking Dp427 and mdx52 mice lacking both Dp427 and Dp140. Both models had minimal Dp427 transcript levels, likely due to the nonsense-mediated decay, and neither expressed Dp427 protein. As expected, mdx52 mice lacked Dp140, confirming their genotypic relevance to human DMD. Our study provides the first atlas of dystrophin expression in the wild-type mouse brain, aiding understanding of the anatomical basis of behavioural and cognitive comorbidities in DMD.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.