Agnieszka Nowacka, Maciej Śniegocki, Ewa A Ziółkowska
{"title":"PCSK9 Regulation of Lipid Metabolism in the Nervous System: Implications for Schwann Cell Function and Peripheral Neuropathy.","authors":"Agnieszka Nowacka, Maciej Śniegocki, Ewa A Ziółkowska","doi":"10.3390/cells14181479","DOIUrl":null,"url":null,"abstract":"<p><p>Neural function relies on tightly regulated lipid metabolism to sustain membrane integrity, synaptic signaling, and energy production. Myelinating glia, particularly Schwann cells, require continuous lipid flux to build and maintain myelin, rendering them vulnerable to imbalances between lipid entry and oxidative capacity. Proprotein convertase subtilisin/kexin type 9 (PCSK9), widely studied in hepatic cholesterol regulation, has emerging roles in the nervous system. In the central nervous system (CNS), local PCSK9 expression influences low-density lipoprotein receptor (LDLR) family abundance, neuronal survival pathways, and neuroinflammatory tone, although circulating PCSK9 has limited parenchymal access due to the blood-brain barrier (BBB). In the peripheral nervous system (PNS), recent evidence highlights a PCSK9-CD36 axis in Schwann cells; genetic Pcsk9 loss elevates CD36, increases fatty-acid influx, promotes lipid droplet expansion and acylcarnitine accumulation, and triggers mitochondrial stress that manifests as hypomyelination, C-fiber pathology, and selective small-fiber neuropathy. These findings suggest that PCSK9 normally restrains CD36-dependent transport to align lipid supply with metabolic demand. Clinically, PCSK9 inhibitors have demonstrated cardiovascular benefit without major neurocognitive signals, yet small-fiber outcomes have not been systematically assessed. This review integrates current evidence on PCSK9 biology across neural compartments, highlights mechanistic links to Schwann cell lipid handling, and outlines research priorities to resolve neural safety and therapeutic potential in lipid-driven neuropathies.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468210/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181479","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural function relies on tightly regulated lipid metabolism to sustain membrane integrity, synaptic signaling, and energy production. Myelinating glia, particularly Schwann cells, require continuous lipid flux to build and maintain myelin, rendering them vulnerable to imbalances between lipid entry and oxidative capacity. Proprotein convertase subtilisin/kexin type 9 (PCSK9), widely studied in hepatic cholesterol regulation, has emerging roles in the nervous system. In the central nervous system (CNS), local PCSK9 expression influences low-density lipoprotein receptor (LDLR) family abundance, neuronal survival pathways, and neuroinflammatory tone, although circulating PCSK9 has limited parenchymal access due to the blood-brain barrier (BBB). In the peripheral nervous system (PNS), recent evidence highlights a PCSK9-CD36 axis in Schwann cells; genetic Pcsk9 loss elevates CD36, increases fatty-acid influx, promotes lipid droplet expansion and acylcarnitine accumulation, and triggers mitochondrial stress that manifests as hypomyelination, C-fiber pathology, and selective small-fiber neuropathy. These findings suggest that PCSK9 normally restrains CD36-dependent transport to align lipid supply with metabolic demand. Clinically, PCSK9 inhibitors have demonstrated cardiovascular benefit without major neurocognitive signals, yet small-fiber outcomes have not been systematically assessed. This review integrates current evidence on PCSK9 biology across neural compartments, highlights mechanistic links to Schwann cell lipid handling, and outlines research priorities to resolve neural safety and therapeutic potential in lipid-driven neuropathies.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.