Samjhana Thapa, Joo Hyun Kim, Jun Yeong Jeong, Sung Sik Hur, Seung Won Lee, Yongsung Hwang
{"title":"Mechanotransduction-Mediated Expansion of Rabbit Vocal Fold Epithelial Cells via ROCK Inhibition and Stromal Cell-Derived Paracrine Signals.","authors":"Samjhana Thapa, Joo Hyun Kim, Jun Yeong Jeong, Sung Sik Hur, Seung Won Lee, Yongsung Hwang","doi":"10.3390/cells14181412","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic advances for vocal fold (VF) disorders are limited by the scarcity of VF-derived epithelial cells (VFEs). Despite their substantial self-renewal capability in vivo, VFEs expand for only a few passages in vitro before succumbing to growth arrest. This has led to the extensive use of alternative cellular sources that are not exposed to physiological stresses of phonation. To address this, we developed an ideal culture strategy that enables long-term expansion of rabbit VFEs (rbVFEs), by utilizing Rho kinase inhibitor (ROCKi), epidermal growth factor (EGF), and mitomycin-treated STO cells or its conditioned media (STO-CM). ROCKi only could support short-term proliferation, and rbVFEs eventually underwent senescence. Further enhancement to ROCKi-containing media with EGF or STO-CM promoted sustained proliferation of rbVFEs. Mechanistically, non-self-renewing rbVFEs exhibited cytoskeletal remodeling associated with increased nuclear YAP localization, elevated focal adhesion, and higher traction forces, whereas self-renewing rbVFEs had cytoplasmic YAP retention, decreased adhesion, and reduced cellular tension. Our optimized culture strategy provides a robust supply of rbVFEs for advancing regenerative approaches in VF research.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181412","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic advances for vocal fold (VF) disorders are limited by the scarcity of VF-derived epithelial cells (VFEs). Despite their substantial self-renewal capability in vivo, VFEs expand for only a few passages in vitro before succumbing to growth arrest. This has led to the extensive use of alternative cellular sources that are not exposed to physiological stresses of phonation. To address this, we developed an ideal culture strategy that enables long-term expansion of rabbit VFEs (rbVFEs), by utilizing Rho kinase inhibitor (ROCKi), epidermal growth factor (EGF), and mitomycin-treated STO cells or its conditioned media (STO-CM). ROCKi only could support short-term proliferation, and rbVFEs eventually underwent senescence. Further enhancement to ROCKi-containing media with EGF or STO-CM promoted sustained proliferation of rbVFEs. Mechanistically, non-self-renewing rbVFEs exhibited cytoskeletal remodeling associated with increased nuclear YAP localization, elevated focal adhesion, and higher traction forces, whereas self-renewing rbVFEs had cytoplasmic YAP retention, decreased adhesion, and reduced cellular tension. Our optimized culture strategy provides a robust supply of rbVFEs for advancing regenerative approaches in VF research.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.