Valérie Gouazé-Andersson, Caroline Delmas, Yvan Nicaise, Julien Nicolau, Juan Pablo Cerapio, Elizabeth Cohen-Jonathan Moyal
{"title":"FGFR1 Inhibition by Pemigatinib Enhances Radiosensitivity in Glioblastoma Stem Cells Through S100A4 Downregulation.","authors":"Valérie Gouazé-Andersson, Caroline Delmas, Yvan Nicaise, Julien Nicolau, Juan Pablo Cerapio, Elizabeth Cohen-Jonathan Moyal","doi":"10.3390/cells14181427","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is an aggressive and highly heterogeneous tumor that frequently recurs despite surgery followed by radio-chemotherapy and, more recently, TTFields. This recurrence is largely driven by glioblastoma stem cells (GSCs), which are intrinsically resistant to standard therapies. Identifying molecular targets that underlie this resistance is therefore critical. Here, we investigated whether the inhibition of FGFR1, previously identified as a key mediator of GBM radioresistance, using pemigatinib, a selective FGFR1-3 inhibitor, could enhance GSC radiosensitivity in vitro and in vivo. Pemigatinib treatment inhibited FGFR1 signaling, promoted proteasome-dependent FGFR1 degradation, and reduced the viability, neurosphere formation, and sphere size in GSCs with unmethylated MGMT, a subgroup known for poor response to standard treatments. In MGMT-unmethylated differentiated GBM cell lines, pemigatinib combined with temozolomide further enhanced radiosensitivity. Transcriptomic analysis revealed that pemigatinib treatment led to the downregulation of <i>S100A4,</i> a biomarker associated with mesenchymal transition, angiogenesis, and immune modulation in GBM. Functional studies confirmed that silencing <i>S100A4</i> significantly improved GSCs' response to irradiation. In vivo, pemigatinib combined with localized irradiation produced the longest median survival compared to either treatment alone in mice bearing orthotopic GSC-derived tumors, although the difference was not statistically significant. These findings support further clinical investigation to validate these preclinical findings and determine the potential role of FGFR inhibition as part of multimodal GBM therapy.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181427","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is an aggressive and highly heterogeneous tumor that frequently recurs despite surgery followed by radio-chemotherapy and, more recently, TTFields. This recurrence is largely driven by glioblastoma stem cells (GSCs), which are intrinsically resistant to standard therapies. Identifying molecular targets that underlie this resistance is therefore critical. Here, we investigated whether the inhibition of FGFR1, previously identified as a key mediator of GBM radioresistance, using pemigatinib, a selective FGFR1-3 inhibitor, could enhance GSC radiosensitivity in vitro and in vivo. Pemigatinib treatment inhibited FGFR1 signaling, promoted proteasome-dependent FGFR1 degradation, and reduced the viability, neurosphere formation, and sphere size in GSCs with unmethylated MGMT, a subgroup known for poor response to standard treatments. In MGMT-unmethylated differentiated GBM cell lines, pemigatinib combined with temozolomide further enhanced radiosensitivity. Transcriptomic analysis revealed that pemigatinib treatment led to the downregulation of S100A4, a biomarker associated with mesenchymal transition, angiogenesis, and immune modulation in GBM. Functional studies confirmed that silencing S100A4 significantly improved GSCs' response to irradiation. In vivo, pemigatinib combined with localized irradiation produced the longest median survival compared to either treatment alone in mice bearing orthotopic GSC-derived tumors, although the difference was not statistically significant. These findings support further clinical investigation to validate these preclinical findings and determine the potential role of FGFR inhibition as part of multimodal GBM therapy.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.