{"title":"Homocysteine-Mediated Neuronal Pyroptosis Contributes to Brain Injury in Heatstroke Rats by Activating the m<sup>6</sup>A-YTHDF2-NLRP3 Pathway.","authors":"Shijia Zhang, Fang Xie, Xue Wang, Zhaowei Sun, Ling Zhang, Weiwei Liu, Xiaobing Chen, Lingjia Qian, Yun Zhao","doi":"10.3390/cells14181437","DOIUrl":null,"url":null,"abstract":"<p><p>Heat stroke (HS) is a life-threatening condition that leads to neuronal injury, particularly in the prefrontal cortex, though its mechanisms remain unclear. In this study, we established a rat HS model and observed significant inflammatory responses and neuronal pyroptosis in the prefrontal cortex 6 h post-heat exposure, with the injury severity increasing over time. Mechanistically, HS activated the caspase-1/GSDMD-dependent pyroptosis pathway through NLRP3 inflammasome activation, resulting in IL-1β and IL-18 release. Additionally, HS caused a marked increase in homocysteine (Hcy) levels in both the serum and the prefrontal cortex, accompanied by reduced expression of the Hcy metabolic enzymes MTHFR and CSE, suggesting Hcy metabolism disruption. In vitro, Hcy induced pyroptosis in PC12 cells, elevating IL-1β, IL-18, and LDH levels. Notably, the NLRP3 inhibitor MCC950 mitigated this effect by reducing IL-18 and LDH release. Reducing Hcy in vivo alleviated neuronal pyroptosis and counteracted the YTHDF2-mediated decrease in NLRP3 mRNA m<sup>6</sup>A modification. Hcy reduced global m<sup>6</sup>A modification, YTHDF2 expression, and NLRP3 m<sup>6</sup>A modification in PC12 cells. This study reveals that the activation of a novel m<sup>6</sup>A-YTHDF2-NLRP3 pathway by Hcy underlies HS-induced neuronal injury, suggesting potential therapeutic targets for HS intervention.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181437","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heat stroke (HS) is a life-threatening condition that leads to neuronal injury, particularly in the prefrontal cortex, though its mechanisms remain unclear. In this study, we established a rat HS model and observed significant inflammatory responses and neuronal pyroptosis in the prefrontal cortex 6 h post-heat exposure, with the injury severity increasing over time. Mechanistically, HS activated the caspase-1/GSDMD-dependent pyroptosis pathway through NLRP3 inflammasome activation, resulting in IL-1β and IL-18 release. Additionally, HS caused a marked increase in homocysteine (Hcy) levels in both the serum and the prefrontal cortex, accompanied by reduced expression of the Hcy metabolic enzymes MTHFR and CSE, suggesting Hcy metabolism disruption. In vitro, Hcy induced pyroptosis in PC12 cells, elevating IL-1β, IL-18, and LDH levels. Notably, the NLRP3 inhibitor MCC950 mitigated this effect by reducing IL-18 and LDH release. Reducing Hcy in vivo alleviated neuronal pyroptosis and counteracted the YTHDF2-mediated decrease in NLRP3 mRNA m6A modification. Hcy reduced global m6A modification, YTHDF2 expression, and NLRP3 m6A modification in PC12 cells. This study reveals that the activation of a novel m6A-YTHDF2-NLRP3 pathway by Hcy underlies HS-induced neuronal injury, suggesting potential therapeutic targets for HS intervention.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.