Giulia Borile, Lolita Dokshokova, Nicola Moro, Antonio Campo, Valentina Prando, Jose L Sanchez-Alonso, Julia Gorelik, Giuseppe Faggian, Marco Mongillo, Tania Zaglia
{"title":"Defined Composition of Culture Media Promotes Rodent Neonatal Cardiomyocyte Maturation and Enables Functional Neuro-Cardiac Co-Culture.","authors":"Giulia Borile, Lolita Dokshokova, Nicola Moro, Antonio Campo, Valentina Prando, Jose L Sanchez-Alonso, Julia Gorelik, Giuseppe Faggian, Marco Mongillo, Tania Zaglia","doi":"10.3390/cells14181434","DOIUrl":null,"url":null,"abstract":"<p><p>Neonatal rodent cardiomyocytes (CMs) are a mainstay of in vitro cardiac research, yet their immature phenotype limits the study of key physiological processes such as excitation-contraction coupling (ECC) and sympathetic modulation. Here, we present a defined low-glucose, serum-free (LGSF) culture protocol that drives the structural and functional maturation of neonatal CMs and supports their integration into functional neuro-cardiac co-cultures. After 15 days in LGSF conditions, CMs exhibit elongated morphology, organized sarcomeres, polarized connexin-43, mitochondrial redistribution, and sarcoplasmic reticulum (SR) development, all closely resembling features of adult cells. These structural hallmarks were paralleled by enhanced Ca<sup>2</sup><sup>+</sup> handling, with increased SR contribution and reduced spontaneous activity, indicative of a mature ECC phenotype. When co-cultured with sympathetic neurons (SN), CMs established anatomically distinct neuro-cardiac junctions. Notably, nicotine stimulation triggered spatially restricted, reversible increases in CM Ca<sup>2</sup><sup>+</sup> transients, confined to varicosity-contacted cells. Pharmacological analysis revealed subtype-specific roles for β<sub>1</sub>- and β<sub>2</sub>-adrenergic receptors, and uncovered evidence of functional crosstalk between them. Our study defines a reproducible culture framework that advances CM maturation and enables the high-resolution interrogation of synaptic-like sympathetic modulation. This approach opens new avenues for mechanistic studies and drug testing in developmentally relevant neuro-cardiac systems.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181434","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neonatal rodent cardiomyocytes (CMs) are a mainstay of in vitro cardiac research, yet their immature phenotype limits the study of key physiological processes such as excitation-contraction coupling (ECC) and sympathetic modulation. Here, we present a defined low-glucose, serum-free (LGSF) culture protocol that drives the structural and functional maturation of neonatal CMs and supports their integration into functional neuro-cardiac co-cultures. After 15 days in LGSF conditions, CMs exhibit elongated morphology, organized sarcomeres, polarized connexin-43, mitochondrial redistribution, and sarcoplasmic reticulum (SR) development, all closely resembling features of adult cells. These structural hallmarks were paralleled by enhanced Ca2+ handling, with increased SR contribution and reduced spontaneous activity, indicative of a mature ECC phenotype. When co-cultured with sympathetic neurons (SN), CMs established anatomically distinct neuro-cardiac junctions. Notably, nicotine stimulation triggered spatially restricted, reversible increases in CM Ca2+ transients, confined to varicosity-contacted cells. Pharmacological analysis revealed subtype-specific roles for β1- and β2-adrenergic receptors, and uncovered evidence of functional crosstalk between them. Our study defines a reproducible culture framework that advances CM maturation and enables the high-resolution interrogation of synaptic-like sympathetic modulation. This approach opens new avenues for mechanistic studies and drug testing in developmentally relevant neuro-cardiac systems.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.