Shuqin Tu, Weidian Chen, Liang Mao, Quan Zhang, Fang Yuan, Jiaying Du
{"title":"IEGS-BoT: An Integrated Detection-Tracking Framework for Cellular Dynamics Analysis in Medical Imaging.","authors":"Shuqin Tu, Weidian Chen, Liang Mao, Quan Zhang, Fang Yuan, Jiaying Du","doi":"10.3390/biomimetics10090564","DOIUrl":null,"url":null,"abstract":"<p><p>Cell detection-tracking tasks are vital for biomedical image analysis with potential applications in clinical diagnosis and treatment. However, it poses challenges such as ambiguous boundaries and complex backgrounds in microscopic video sequences, leading to missed detection, false detection, and loss of tracking. Therefore, we propose an enhanced multiple object tracking algorithm IEGS-YOLO + BoT-SORT, named IEGS-BoT, to address these issues. Firstly, the IEGS-YOLO detector is developed for cell detection tasks. It uses the iEMA module, which effectively combines the global information to enhance the local information. Then, we replace the traditional convolutional network in the neck of the YOLO11n with GSConv to reduce the computational complexity while maintaining accuracy. Finally, the BoT-SORT tracker is selected to enhance the accuracy of bounding box positioning through camera motion compensation and Kalman filter. We conduct experiments on the CTMC dataset, and the results show that in the detection phase, the map50 (mean Average Precision) and map50-95 values are 73.2% and 32.6%, outperforming the YOLO11n detector by 1.1% and 0.6%, respectively. In the tracking phase, using the IEGS-BoT method, the multiple objects tracking accuracy (MOTA), higher order tracking accuracy (HOTA), and identification F1 (IDF1) reach 53.97%, 51.30%, and 67.52%, respectively. Compared with the base BoT-SORT, the proposed method achieves improvements of 1.19%, 0.23%, and 1.29% in MOTA, HOTA, and IDF1, respectively. ID switch (IDSW) decreases from 1170 to 894, which demonstrates significant mitigation of identity confusion. This approach effectively addresses the challenges posed by object loss and identity switching in cell tracking, providing a more reliable solution for medical image analysis.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090564","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell detection-tracking tasks are vital for biomedical image analysis with potential applications in clinical diagnosis and treatment. However, it poses challenges such as ambiguous boundaries and complex backgrounds in microscopic video sequences, leading to missed detection, false detection, and loss of tracking. Therefore, we propose an enhanced multiple object tracking algorithm IEGS-YOLO + BoT-SORT, named IEGS-BoT, to address these issues. Firstly, the IEGS-YOLO detector is developed for cell detection tasks. It uses the iEMA module, which effectively combines the global information to enhance the local information. Then, we replace the traditional convolutional network in the neck of the YOLO11n with GSConv to reduce the computational complexity while maintaining accuracy. Finally, the BoT-SORT tracker is selected to enhance the accuracy of bounding box positioning through camera motion compensation and Kalman filter. We conduct experiments on the CTMC dataset, and the results show that in the detection phase, the map50 (mean Average Precision) and map50-95 values are 73.2% and 32.6%, outperforming the YOLO11n detector by 1.1% and 0.6%, respectively. In the tracking phase, using the IEGS-BoT method, the multiple objects tracking accuracy (MOTA), higher order tracking accuracy (HOTA), and identification F1 (IDF1) reach 53.97%, 51.30%, and 67.52%, respectively. Compared with the base BoT-SORT, the proposed method achieves improvements of 1.19%, 0.23%, and 1.29% in MOTA, HOTA, and IDF1, respectively. ID switch (IDSW) decreases from 1170 to 894, which demonstrates significant mitigation of identity confusion. This approach effectively addresses the challenges posed by object loss and identity switching in cell tracking, providing a more reliable solution for medical image analysis.